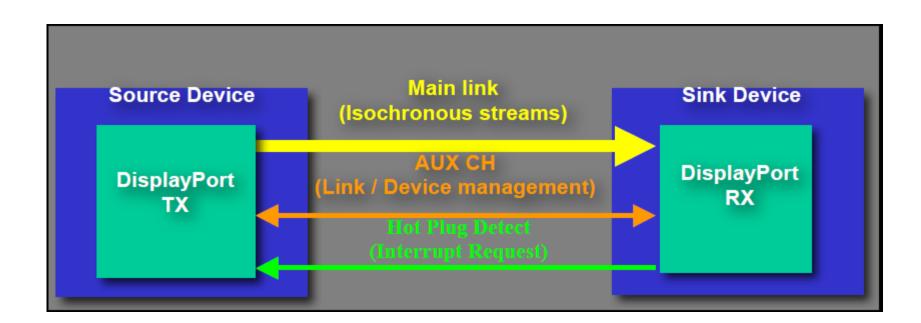
/// UNIGRAF

All You Need To Know About DisplayPort


What is DisplayPort?

- High-speed packet based interface
 - ✓ Enables multiple independent streams on a single cable
 - ✓ Can be combined with other standards such as USB and Thunderbolt
- Flexible lane configuration
 - ✓ Allows 1,2 or 4 lanes to be enabled depending on A/V stream requirements
 - ✓ DP Alt Mode in USB-C 2 lanes for A/V stream and 2 lanes for USB 3.1
- Fixed rates can be selected
 - √ 1.62Gbps (RBR), 2.7Gbps (HBR), 5.4Gbps (HBR2), 8.1Gbps (HBR3) per lane
 - ✓ Up to 25.92 Gbps application bandwidth throughtput (at 4 lanes)
- Flexible pixel packing
 - ✓ Stream rate is decoupled from link rate
- NEW. HDCP 2.2
- NEW. FEC and DSC

DisplayPort Components

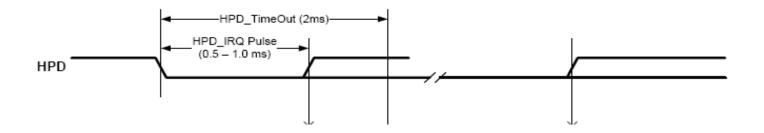
- Main Link
- Auxiliary channel (AUX CH)
- Hot Plug Detect (HPD)

Main Link

- 4 differential pairs (lane 0 to lane 3)
- Carries video & audio + their attributes (video parameters, audio format)
- 1,2 or 4 lanes in use
- All lanes used to carry video & audio
- Clock is synthesized at the Sink

Pixel data mapping over 4-lane Main

- Pixels 0, 4...: Lane 0,
- Pixels 1, 5...: Lane 1,
- Pixels 2, 6...: Lane 2,
- Pixels 3, 7...: Lane 3



AUX Channel

- Bidirectional, half-duplex, differential
- Carries link status and management data
- Source
 - ✓ Talks first
 - ✓ Places Requests
- Sink
 - ✓ Talks when requested
 - ✓ Places Replies
- Data transfer speed 1 Mbps

HPD (Hot Plug Detect)

- Pull-down at the Source side
- Set to 3 V (asserted) by the Sink to signal "cable is plugged"
- Pulsed to GND by the Sink to request Source's attention (interrupt request)
- HPD at GND for:
 - < $0.25 \text{ ms} \rightarrow \text{glitch}$
 - 0.25 ms 2 ms → interrupt request from Sink
 - > 2 ms \rightarrow unplug

DP Sink Components

- DisplayPort Configuration Data (DPCD): a virtual memory with addresses 0x00000 – 0xFFFFF.
- Extended Display Identification Data (EDID): traditional (I²C) serial memory.

AUX Channel Details

- Source Request + Sink Reply = Transaction
- Addressing a DPCD location →Native transact.
- Addressing a I²C device → I²C transact.
- Reply can be ACK, NACK or DEFER (= wait)

DPCD

DPCD Field	DPCD Addresses
Receiver Capability	00000h - 000FFh
Link Configuration	00100h - 001FFh
Link/Sink Device Status	00200h - 002FFh
Source Device-specific	00300h - 003FFh
Sink Device-specific	00400h - 004FFh
Branch Device-specific	00500h - 005FFh
Link/Sink Device Power Control	00600h - 006FFh
eDP-specific	00700h - 007FFh

CAPTURING THE WORLD

DPCD

DPCD Field	DPCD Addresses
Sideband MSG Buffers	01000h - 017FFh
DPRX Event Status Indicator	02000h - 021FFh
Extended Receiver Capability	02200h - 022FFh
Protocol Converter Extension	03000h - 030FFh
Multi-touch (for eDP)	60000h - 61CFFh
HDCP 1.3 and HDCP2.2	68000h - 69FFFh
LT-tunable PHY Repeater	F0000h - F02FFh
MyDP-specific	FFF00h - FFFFFh

CAPTURING THE WORLD

Link Training Procedure

- 1. A Sink is plugged (HPD = 3V)
- 2. Source reads the EDID (what video modes are supported?)
- 3. Source reads the DPCD (how many lanes, which bitrates are supported?)
- 4. Source decides how many lanes to use, the bitrate and starts Link Training
- 5. Sink reports about received signal quality and desired signal voltage and preemphasis
- 6. Source updates its PHY levels and iterates to step 5.

FEC Characteristics

- FEC (Forward Error Correction), new to DP standard 1.4
- Reed-Solomon code, RS(254,250)
 - ✓ FEC block 250 symbols + 4 RS parity symbols
 - √ +5 FEC parity code +1 CD_ADJ (disparity) code
 - ✓ 2.4% Overhead
 - ✓ Corrects 2 errors
 - ✓ Will work:
 - SST and MST mode
 - Uncompressed or DSC bitstream (required by standard to use FEC)

FEC DPCD registers

Register	DPCD Address
FEC_CAPABILITY (Sink sets)	0x00090
FEC_CONFIGURATION (Source sets)	0x00120
FEC_STATUS (Sink sets)	0x00280
FEC_ERROR_COUNT (Sink sets)	0x00281 - 0x00282

CAPTURING THE WORLD

Compression Requirements

- Compression required for higher resolution and framerate
- In USB-C Alt-mode DisplayPort BW may be halved
- VESA requirements:
 - ✓ Visually lossless
 - ✓ Independently decodable regions
 - ✓ Many color formats and bit depths
 - ✓ Easy and inexpensive implementation in realtime
- MPEG-2, H.264, JPEG-2000 and VC-2
 - ✓ Require storage of many lines => expensive
- JPEG-LS:
 - ✓ Cannot guarantee constant bit rate
 - ✓ Quality not good enough when lossy

DSC Characteristics

- DSC (Display Stream Compression) new to DP standard 1.4
- Real time, frame-by-frame
- Image can be split to slices
- 3 pixels per clock (4:4:4)
- Typically 1:2 or 1:3 compression ratio, visually lossless
- v1.2a supports:
 - √ 4:4:4, 4:2:2, 4:2:0 color formats, RGB and YCbCr
 - ✓ 8-16 bits per color component
- Works as SST or MST
- VESA provides C-source code as example implementation

Features	DSC 1.1	DSC 1.2a	VDC-M 1.1
Visually lossless compression performance verified by subjective testing			
30 bit color, compression ratio (bits/pixel)	3.75:1 (8 bpp)	3.75:1 (8 bpp)	5:1 (6 bpp)
24 bit color, compression ratio (bits/pixel)	3:1 (8 bpp)	3:1 (8 bpp)	4:1 (6 bpp)
IC complexity	Low	Low	Medium
Backwards compatibility	DSC 1.x	DSC 1.x	N/A
Both encoder and decoder are specified	✓	✓	✓
Normative C language code	✓	✓	✓
Frame-by-frame compression	✓	✓	✓
Bits per color support	8/10/12	8/10/12/14/16	8/10/12
High Dynamic Range-ready	✓	✓	✓
RGB and YCbCr 4:4:4 native encoding	✓	✓	✓
YCbCr 4:2:0 or 4:2:2 native encoding	No	✓	✓
Image test data base available from VESA	✓	✓	✓
Compliance test guideline and test scripts	✓	In development	
Publicly known adopting standards	MIPI DSI 1.2	HDMI 2.1	MIPI DSI-2 1.1
	DSI-2 1.0	VESA DP 1.4a	
	VESA eDP 1.4b		

[✓] Available now

DSC DPCD registers

Register	DPCD Address
Receiver DSC Capabilities (Sink sets)	0x00060 - 0x0006F
DSC Enable (Source sets)	0x00160
DSC Status (Sink sets)	0x0020F

HDCP 2.2 CTS

- Transmitter Tests (UCD family certified by DCP LLC)
 - 1A test set downstream procedure with Receiver
 - 1B test set downstream procedure with Repeater
- Receiver Tests (UCD family certified by DCP LLC)
 - 2C test set upstream procedure with Transmitter
- Repeater Tests (UCD-400 certification is in progress)
 - 3A test set downstream procedure with Receiver
 - 3B test set downstream procedure with Repeater
 - 3C test set upstream procedure with Transmitter

DP 1.4 Link Layer CTS (under GMR at VESA)

- Source Device Tests
 - 4.2.1 AUX reads after HPD Plug event
 - 4.2.2 EDID and DPCD reads
 - 4.3.1 Link Training
 - 4.3.2 Link Maintenance
 - 4.3.3 Video Time Stamp generation
- Sink Device Tests
 - 5.2.1 AUX Channel Protocol
 - 5.2.2 Sink Device DPCD Field Implementation
 - 5.3.1 Link Training
 - 5.3.2 Link Maintenance (development in progress)

Thank You!

/// UNIGRAF

www.unigraf.fi
www.unigraf-china.cn
info@unigraf.fi