

UCD-422 Gen2, UCD-422 UCD-412

User Manual

UCD Console SW Version 3.7

Copyright

This manual, Copyright © 2025 Unigraf. All rights reserved.

Reproduction of this manual in whole or in part without written permission of Unigraf is prohibited.

Notice

The information given in this manual is verified in the correctness on the date of issue. The authors reserve the right to make any changes to this product and to revise the information about the products contained in this manual without an obligation to notify any persons about such revisions or changes.

Edition

UCD-422 UCD Console 3.7 User Manual, Rev 4

Date: 11 December 2025

Company Information

Unigraf
Piispantilankuja 4
FI-02240 ESPOO
Finland
Tel. +358 9 859 550

<mailto:info@unigraf.fi>

<https://www.unigraf.fi>

<http://www.unigraf-china.cn>

Trademarks

Unigraf, UCD, UCD-422, UCD-412, UCD Console and TSI are trademarks of Unigraf Oy.

DisplayPort™ and the DisplayPort™ logo are trademarks owned by the Video Electronics Standards Association (VESA®) in the United States and other countries.

The Adopted Trademarks HDMI, High-Definition Multimedia Interface, the HDMI Logo and HDMI Port Logo are trademarks or registered trademarks of HDMI Licensing Administrator, Inc. in the United States and other countries.

USB™, USB Type-C™ and USB-C™ are trademarks of USB Implementers Forum Inc.

HDCP is a trademark of Digital Content Protection LLC.

Altera and Intel FPGA are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

Windows® is trademark of Microsoft Corporation.

macOS® is a trademark of Apple Inc.

Linux® is a trademark of Linus Torvalds.

All other trademarks are properties of their respective owners.

Limited Warranty

Unigraf warrants its hardware products to be free from defects in workmanship and materials, under normal use and service, for twelve (12) months from the date of purchase from Unigraf or its authorized dealer.

If the product proves defective within the warranty period, Unigraf will provide repair or replacement of the product. Unigraf shall have the whole discretion whether to repair or replace, and replacement product may be new or reconditioned. Replacement product shall be of equivalent or better specifications, relative to the defective product, but need not to be identical. Any product or part repaired by Unigraf pursuant to this warranty shall have a warranty period of not less than 90 days, from the date of such repair, irrespective of any earlier expiration of original warranty period. When Unigraf provides replacement, then the defective product becomes the property of Unigraf.

Warranty service may be obtained by contacting Unigraf within the warranty period. Unigraf will provide instructions for returning the defective product.

CE Mark

UCD-4XX Series products meet the essential health and safety requirements, is in conformity with and the CE marking has been applied according to the relevant EU Directives using the relevant section of the corresponding standards and other normative documents.

Table of Contents

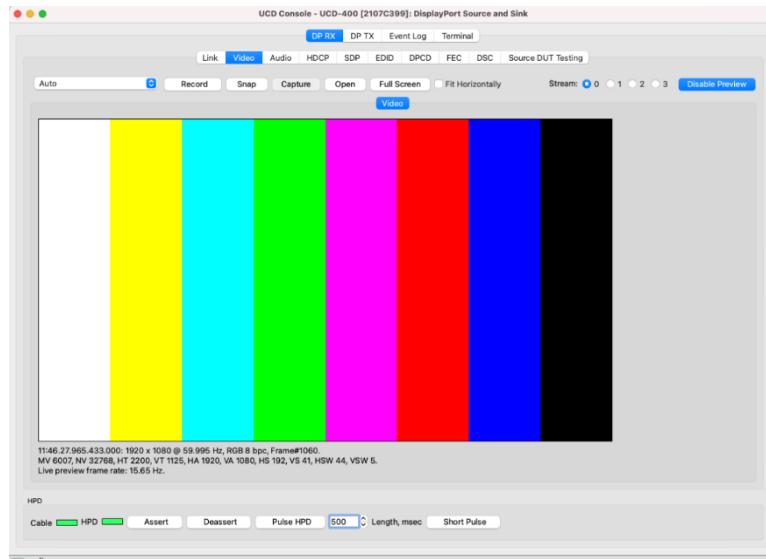
Copyright	2
Notice	2
Edition.....	2
Company Information.....	2
Trademarks.....	3
Limited Warranty.....	3
CE Mark	3
Table of Contents.....	4
1. About This Manual	6
Purpose.....	6
Product and Software Version	6
Notes	6
2. Introduction	7
Product Description UCD-422 Gen2, UCD-422 and UCD-412.....	7
Safety and Operational Precautions.....	9
3. Installation.....	10
Installation Package.....	10
Software Installation	10
Firmware Update Procedures	12
Firmware Downgrading.....	16
License Manager	17
UCD Console.....	19
Options.....	20
Detaching and Cloning Tabs	21
4. Analyzer Operation	22
Functionality Tabs.....	22
Functionality Tabs.....	23
Link Tab	23
HDCP Tab.....	26
Capture Tab.....	28
Video Tab.....	29
HDMI Link Analyzer Tab	33
Audio Tab.....	37
EDID/DisplayID Tab	39
Source DUT Testing Tab	40
InfoFrame Tab	42
CEC Tab.....	44
Generator Operation	48
Functionality Tabs.....	48
Functionality Tabs.....	49
Pattern Generator Tab	49
Playback Tab.....	58
Audio Generator Tab.....	68
HDCP Tab.....	69
EDID/DisplayID Tab	71
Sink DUT Testing Tab	72
6. HDMI Link Timeline Viewer	75
Wave Form and Symbols View Settings.....	77
FrameView Tab	79
Main Link Events Tab	79
Symbols Tab.....	83
Event Details View	84
Wave Forms View	85
Symbols View	89
Frame Image View	90
7. Event Timeline Viewer	91
8. Event Log.....	95

Logged Events	97
Event Transaction List.....	100
Customizing Transaction List	101
Event Details.....	103
9. EDID/DisplayID Editor	105
EDID Editor Features.....	107
Editing Tips.....	107
10. Packet Editor.....	109
11. Pattern Editor	110
12. Image Converter.....	112
Appendix A: Product Specification	113
UCD-422 and UCD-412	113
Appendix B: Product Features	114
UCD-422, UCD-412 and UCD-452 Features.....	114
Product Options.....	115
Appendix C: Predefined Timings	116
Appendix D: Predefined Patterns.....	121
Appendix E: Sink, Source and Repeater Tests	126
Compliance Tests	Error! Bookmark not defined.
Running CTS Tests.....	Error! Bookmark not defined.
Test Report.....	Error! Bookmark not defined.
CRC Video Tests – HDMI Rx	127
VRR Source DUT Tests – HDMI Rx	130
Electrical Test Set – HDMI Rx	131
Audio Test Set – HDMI Rx	132
CEC Functional Tests Set – HDMI Rx	133
Pixel Level Video Tests – HDMI Rx.....	134
VRR Sink DUT Tests – HDMI Tx.....	137
Connection Test – HDMI Tx.....	138
Cable Test – HDMI Tx.....	139
Appendix F: VTP Pattern Language	140
General.....	140
Commands	141
Variables	147
Appendix G: Firmware UPDATE WITH QUARTUS.....	149
Downloading Tools	149
Step 1	149
Step 2	150
Appendix H: Playlists and Scenarios	151
Playlists.....	152
Scenarios	153
Parameters	153
Example	157
Sample Content in Playback Tab.....	159
HDMI.....	159
Playlist: Basic Video & Audio Example.....	160
Playlist: Audio-Video Latency.....	161
Playlist: HDR & Metadata Example.....	162
Playlist: Grayscale.....	163
Playlist: Dolby Vision DEMO	164
Playlist: VRR Example.....	165
Playlist: QMS-VRR Example	166
Playlist: ALLM	167
Playlist: HDR10+ SSTM & SBTM Example.....	168

1. ABOUT THIS MANUAL

Purpose

This guide is a User Manual of UCD-422 Gen2, UCD-422 and UCD-412 test devices, that are USB-connected video interface test units for use with a computer.


The purpose of this guide is to

- Provide an overview of the product and its features.
- Provide instructions for the user on how to install the software and the drivers.
- Provide instructions for the user on how to update the FW of the unit.
- Introduce the HW features of the UCD-4XX units.
- Provide instructions for the user on how to use UCD Console SW.

Product and Software Version

This manual explains features found in UCD Console SW Bundle **3.7**. Please consult Unigraf for differences or upgrades of previous versions.

Please consult the Release Notes document in the installation package for details of the SW and FW versions and changes to previous releases.

Notes

On certain sections of the manual, when important information or notification is given, text is formatted as follows. Please read these notes carefully.

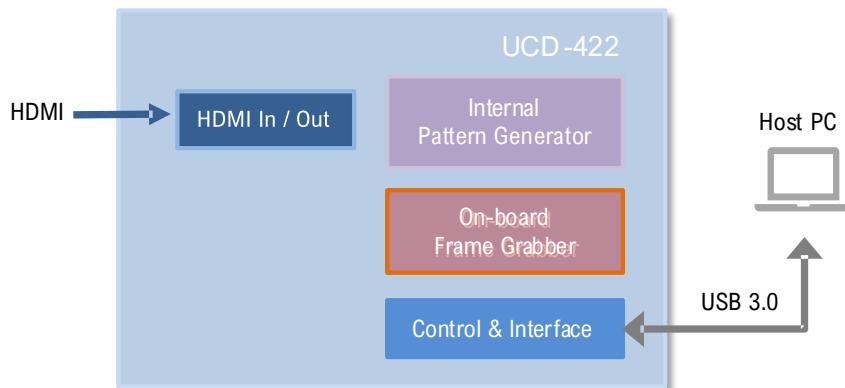
Note: This text is an important note

Warning: This is a warning about a direct risk for the functionality of the device

2. INTRODUCTION

Product Description UCD-422 Gen2, UCD-422 and UCD-412

Product Features

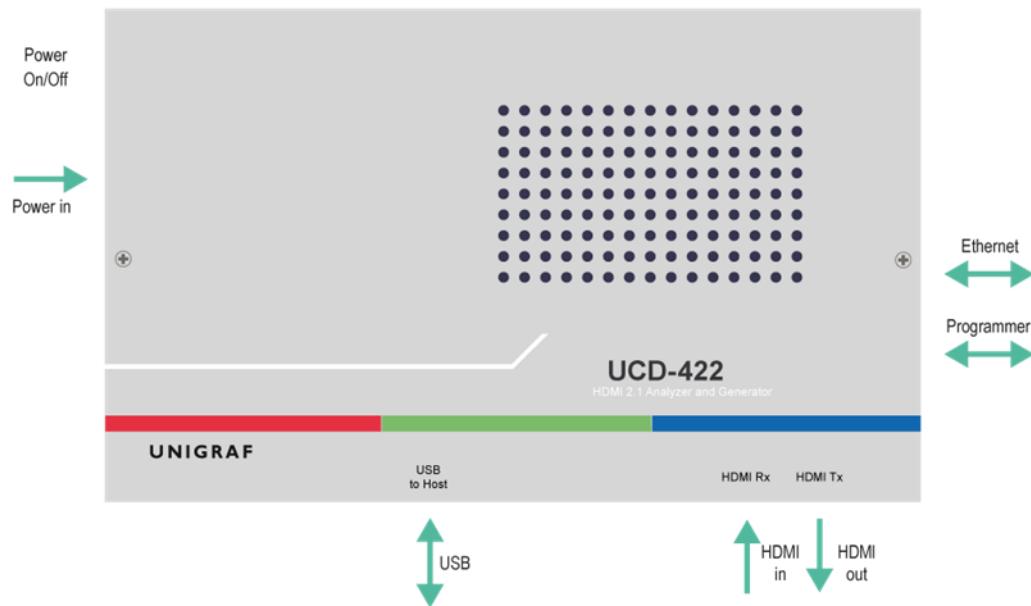

- UCD-422 Gen2, UCD-422: Reference Sink and Source for verifying HDMI connected devices.
- UCD-412: Reference Source for verifying HDMI connected sinks.
- HDMI 2.1 compatible. Supports FRL and TMDS signaling.
- Supports HDMI video and audio up to 10K@30 Hz, 8K@60 Hz (YCbCr 4:2:0), 4K@120 Hz (YCbCr 4:2:0)
- Supports Display Stream Compression (DSC), and Enhanced Audio Return Channel (eARC)
- Compatible with HDCP versions 1.4 and 2.3
- 2 GB on-board high-speed video frame buffer
- High speed USB 3.0 host PC interface

Please refer to *Product Specifications* in the appendix of this document for details.

Functional Description

UCD-422 units consist of a multimedia signal input stage with on-board frame buffer, an internal pattern generator, a control stage, and a PC interface stage. In the Input Stage the signal is conditioned and converted to desired format. The Interface and Control stages are either passing the captured data directly to the USB interface or storing it to the frame buffer. The internal pattern generator is able to source a signal for testing sink and branch units. The Interface & Control stages are receiving instructions from the host PC to configure and control the functionality of the unit.

Please find below logical diagram of UCD-422 unit



Delivery Content

- Product shipment contains:
- The UCD-422 Gen2, UCD-422 or UCD-412 unit
- AC/DC Power supply (100 to 240 Vac 50/60 Hz input, +12 Vdc output)
- USB 3.0 compliant cable for host PC connection
- HDMI 2.1 grade HDMI cable
- Micro-USB type B compatible cable needed for FW programming.
- Ethernet cable needed for FW programming.

Connections

The image below indicates the connections in **UCD-422** unit and their description.

Name	Description
HDMI in	HDMI 2.1 compliant input from the upstream Source
HDMI out	HDMI 2.1 compliant output to the downstream Sink
Power in	+12 Vdc Power Supply Input
Power On/Off	Rocker power switch
USB	USB 3.0 connection to the host PC
Programmer	USB interface used in device FW update (behind a cover)
Ethernet	Ethernet interface used in device FW update (behind a cover)

Note: Capturing and sourcing high resolution video modes, especially 4K 8K and 10K video modes and the 120 Hz frame rate set stringent requirements on the video cables and connectors.

Warning: In order to avoid damage to the unit and the PC, please **always attach the power cord (Power In) to the unit first**, and after that connect the USB cable to the PC.

Safety and Operational Precautions

Please find below the **Safety Precautions** for using the Unigraf UCD test instrument. Please also carefully read the **Notes and Warnings** within the text of this manual.

These **Precautions and Warnings** are provided to enable a safe use of the UCD test equipment. Therefore, Unigraf assumes no liability when the user fails to follow the expressed **Precautions and Warnings**.

- Use only Unigraf provided AC/DC Power Adapter. Please make sure that connectors and cabling to the Power Adapter are intact. In case there are any doubts about the condition of the Adapter or cabling, stop using it immediately.
- It is important to ensure that the used AC input voltage is within the specified range (100 to 240 Vac 50/60 Hz) and the fuses in the AC lines are of the specified type. If in doubt, do not connect the device.
- UCD devices are rated for indoor use only. They are rated for Pollution Degree 2 as defined in IEC 61010-1. This classification corresponds to usage in a typical office or home environment. Under normal use, only dry, non-conductive pollution occurs. Occasionally, temporary conductivity caused by condensation can be expected. Temporary condensation occurs only when the product is out of service.
- When installing the unit, connect the Power Adapter to the UCD device first, after that connect the AC plug. Please disconnect the USB cable to the controlling PC and remove cabling to DUT while connecting the power input cables.
- It is forbidden to open the housing of the UCD device without written permission from Unigraf. Failure to comply with this rule will void the warranty of the unit.
- UCD devices are intended for use as Electrical Test Instrument only. Use for other purposes is forbidden.
- Use UCD equipment only in its specified ambient temperature and humidity.
- In order to ensure that the UCD device and associated SW will operate properly, please ensure that the PC used for controlling the UCD device complies with the minimum requirement set by Unigraf.
- Please keep UCD software updated by regularly checking the updates on Unigraf download page (<https://www.unigraf.fi/downloads/>). Please update the device firmware to match the installed software.

3. INSTALLATION

Installation Package

The UCD software installation package can be obtained from Unigraf download page at <https://www.unigraf.fi/downloads/>. Please, note that there are separate packages for Windows, macOS and Linux

The installation package is a bundle between the components needed for UCD Console SW and for TSI SDK. The bundle contains the following items:

- Drivers (installed during set up)
- UCD Console SW (installed during set up)
- License Manager (installed during set up)
- Device configuration utility (installed during set up)
- Packet Editor (installed during set up)
- TSI SDK
- User Manuals including this document.

In some cases, also the firmware of the unit needs to be updated. If in doubt, please contact Unigraf.

Note: The software should be installed before connecting the UCD unit to the computer.

Note: System administrator's privileges are required for performing installations.

Software Installation

Windows

Install *.exe file from the package.

Start installation by running application **SoftwareBundle_X.X.XXX**.

The welcome page is displayed and shows the software package release version.

The user is also asked if he/she wants to:

- Create a desktop shortcut
- Install the Visual C++ redistributable (needs to be present on Windows)
- Install Unigraf USB drivers
- Confirm by selecting *Next* dialog button. Select *Install* to start the installation.
- Select *Finish* to exit the installation dialog.

macOS

Install *.pkg file from the package. This is a universal binary for ARM and Intel x86.

Start installation by running application **SoftwareBundle_X.X.XXX**.

Confirm by selecting *Next* dialog button. Select *Install* to start the installation.

Select *Finish* to exit the installation dialog.

Note: If you are downgrading, please remove the *Unigraf UCD Tools* folder from the *Applications* folder before starting installation.

Note: If installation fails, remove the *Unigraf UCD Tools* folder and any possible copies from the *Applications* directory and try again.

Linux

Linux extract the *.tar.gz file. You will find two install scripts (*install-libfuse.sh* and *install.sh*).

In the Files app select each script in turn, right click and select *Properties* to open the *Properties dialog*. Toggle the *Executable as Program* button.

In the Files app open a terminal window by unselecting any selected files and right clicking and selecting *Open in Terminal* to run the scripts (order is important).

In the terminal type: `sudo ./install-libfuse.sh`

You will be prompted for you password.

Type: `sudo ./install.sh`

You will be prompted with:

Please proceed to 'Software & updates' application to tab 'Other Software' and uncheck checkboxes or remove 'cdrom' entry from /etc/apt/sources.list file. Otherwise you will have problems during UCD Console package installation. If you are already done, enter the key 'y'. If not - 'n'

For Ubuntu just enter y. For debian follow instruction.

You will then be prompted again with:

Please proceed to 'Software & updates' application to the first tab and set check box 'Officially supported (main)'. Otherwise you will have problems during UCD Console package installation. If you are already done, enter the key 'y'. If not - 'n'

For Ubuntu just enter y. For debian follow instruction

Answer y for additional prompts.

The Ucd Tool Installer Setup app should now be running.

Select *Next>*

Select radio button for *Install for all users* or *Install just for me*.

You are asked to Choose Installation Directory. Do **NOT** choose the default (/root/Unigraf/Unigraf UCD Tools at time of writing). Select a directory that is easy to access and remember.

Note the warning: **Installing in existing directory. It will be wiped on uninstallation.**

Select *Next> Install and Finnish.*

Navigate to the *Unigraf UCD Tools* directory under the installation directory and double click the app you want to run (*UCDConsole.AppImage* for example).

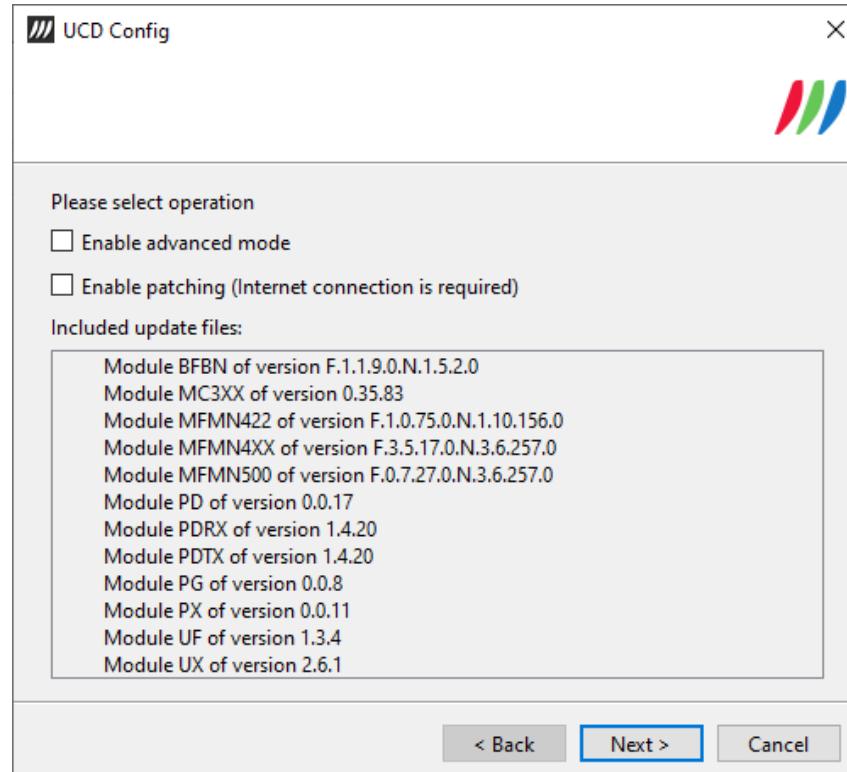
Firmware Update Procedures

UCD Configuration Utility is used to load an updated firmware to the device. As an option, UCD Configuration Utility can be used to select possible operation roles present in the UCD unit. A firmware set for the selected operation roles is created and the firmware set is programmed to the device. Please contact Unigraf for details.

Updating from Earlier FW Versions

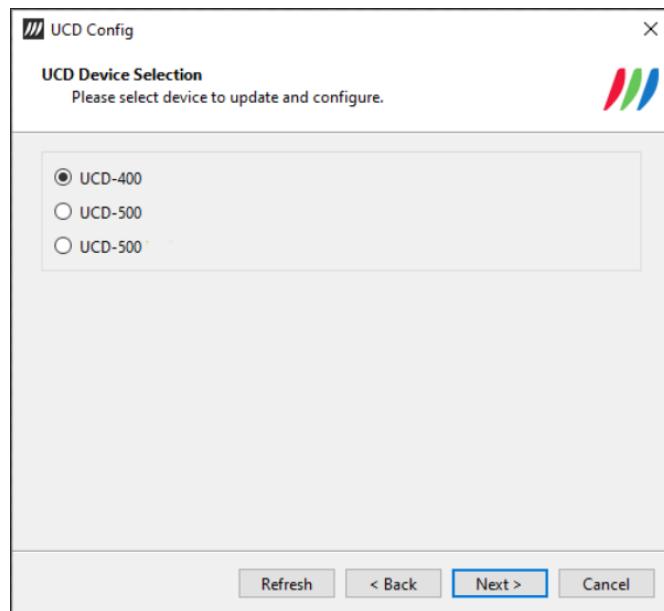
UCD Firmware versions prior to 1.8.52 (see Help > About on Consol) do not support the procedure described here. Follow the instructions in *Appendix G Firmware Recovery Procedure with Quartus Prime* in this manual.

Note: Firmware update is a sensitive process. Please do not disconnect the device from the PC and do not power it off before the operation is completed unless specially requested. Avoid plugging and unplugging other USB devices when the firmware update is in progress.


To update the firmware or create a new configuration on a UCD-4XX device, perform the following steps:

- ▶ Connect the UCD unit to a power supply and connect the USB cable.
- ▶ Open UCD Console SW. Select **Tools > Firmware Update**. UCD Config will open.

UCD Config


The first page of the utility indicates the firmware component versions present in the package. Select **Enable advanced mode** checkbox if you want to customize the installation (possibly to downgrade firmware for example). **Enable patching (Internet connection is required)** check box is not relevant for UCD-4XX devices.

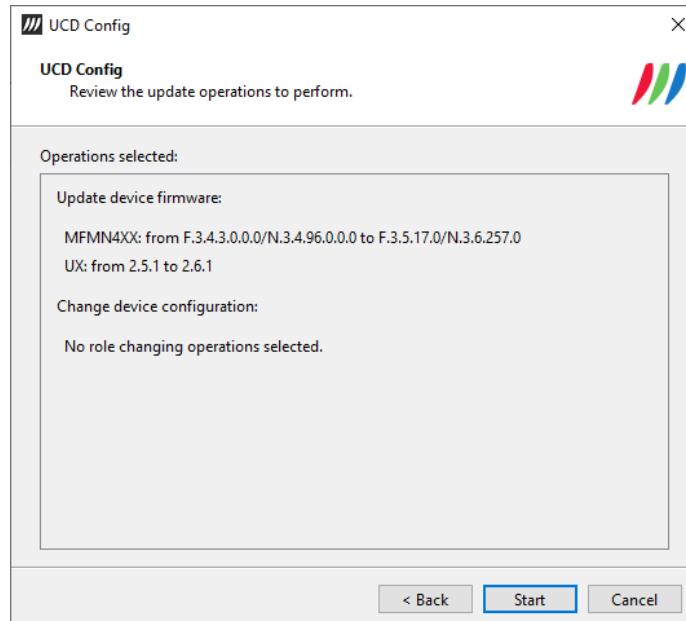
Select **Next** to proceed.

UCD Device Selection

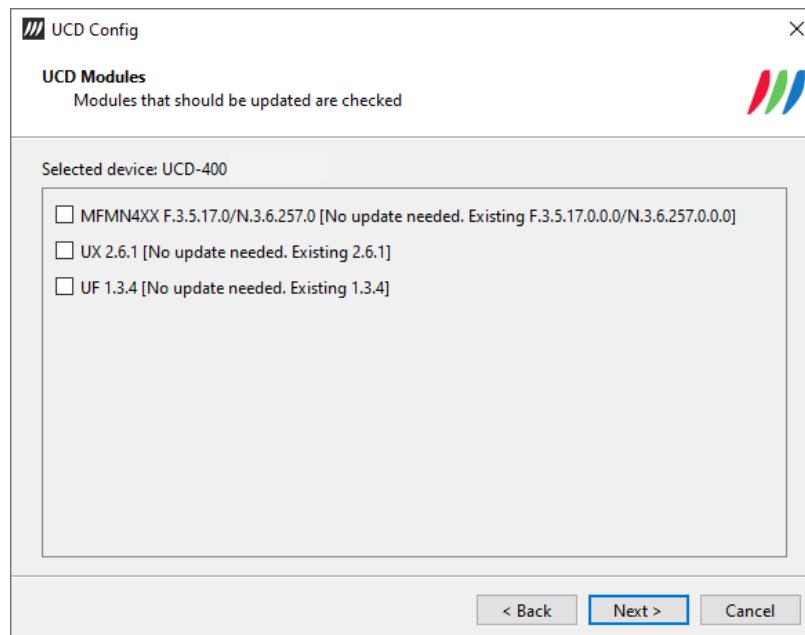
From the list of connected UCD devices please select the one that you want to update. Click **Next**.

Review updates

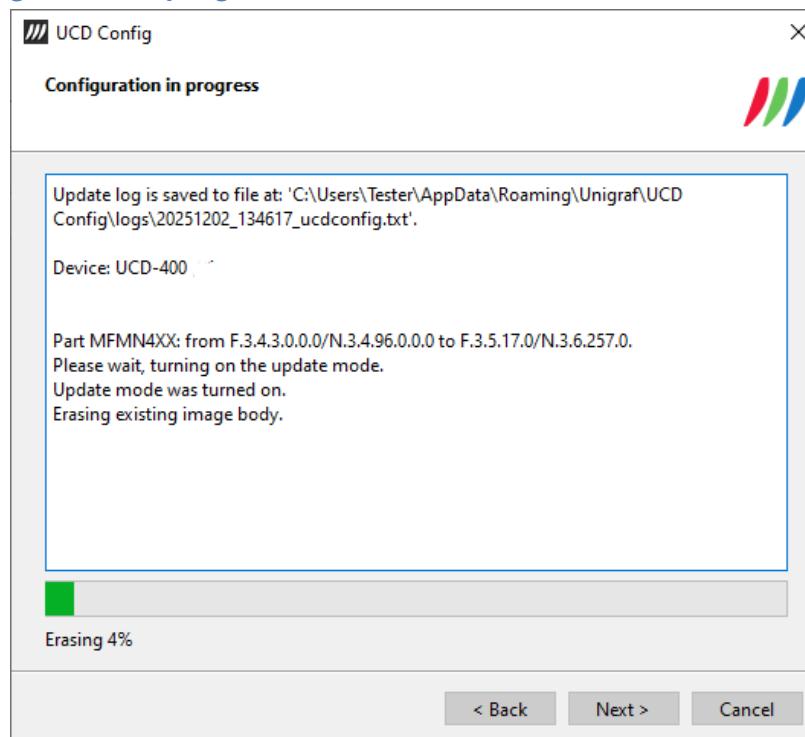
A new dialog lists:


- ▶ FW components available in the UCD device
- ▶ Current FW version (from)
- ▶ FW to be installed (to)

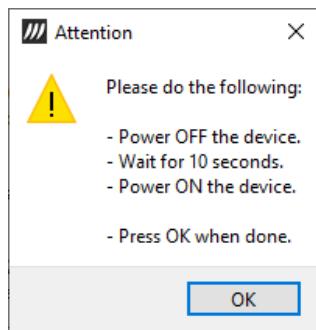
Note: Selecting individual components for update is only enabled in **Advanced Mode**.



Click **Start** to start the FW update procedure.



Advanced Mode


Advanced mode allows users to select individual components to update. Click **Next** to review the components and start the update procedure.

Configuration in progress

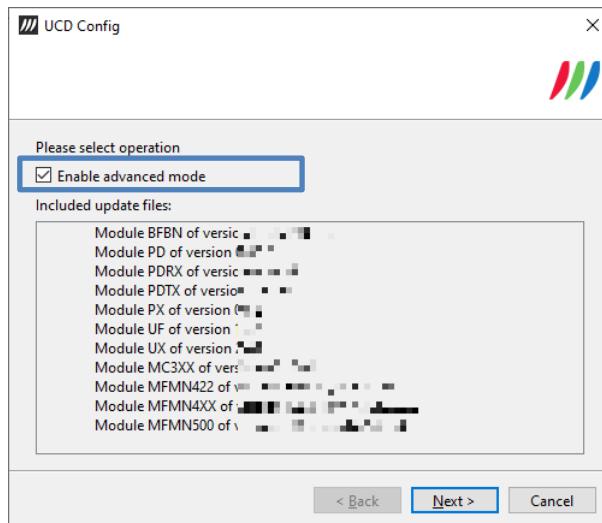
During the installation, you will be prompted to power cycle the device (power off, wait for 10 seconds and then power the device on again). Select **OK** to proceed.

After the update has finished, click **Next** to see a summary and select **Finish** to complete.

Please note that the update procedure may take several minutes to complete.

Recovering Failures in FW Update Procedure

If FW Update procedure fails (e.g., when updating from an earlier FW that does not support the procedure described here) refer to Appendix G of this manual for instructions in *Firmware Recovery Procedure with Quartus Prime*.


Once FW Recovery procedure has been done and a Firmware version supporting UCD Firmware Configuration tool has been installed, all future updates can be done using this tool.

Firmware Downgrading

The previously released Unigraf SW Bundle 2.4.XX package does not contain UCD Device Firmware (FW). In case UCD device has been installed with the FW delivered with Unigraf 3.X SW Bundle, and version downgrade is needed, also UCD Device Firmware has to be rolled back.

Please follow the procedure below:

1. Download the latest **Console 2 SW Bundle (2.4.XX)** from Unigraf download page at unigraf.fi/downloads.
2. Run the application **SoftwareBundle_2.4.XX.exe** in the package to install the package. Please do not launch UCD Console application yet.
3. Download **Console 2: FW Package 2.3.38** from the same download page
4. Run the application **FirmwarePackage_2.3.38.exe** to copy UCD device FW in a proper folder in your PC
5. Launch **UCD Console**
6. Select **Tools > Firmware Update** to start **UCD Config** utility
7. In UCD Config select **Enable advanced mode**

8. Select the device. **Click Next.**
9. In **UCD Modules** select the module titled **MFMN4XX F.X.X.X/N.X.X.X**
10. Click **Next**. Click **Start** to start programming FW to the connected UCD Device

License Manager

Licensing

The features of UCD Console SW are divided into groups based on the target use of the device. Most basic features can be used by default, and more advanced feature groups are enabled by dedicated licenses. When the licenses are present, the related part of the GUI will be shown, or the related control will be enabled.

Unigraf licenses are provided as strings of characters, **License Keys**. Each License Key enables a dedicated function in one device. Each device has its dedicated **Seed Number**. Each **License Key** is tied to one **Seed Number**. License Keys can be freely used in any number of PCs

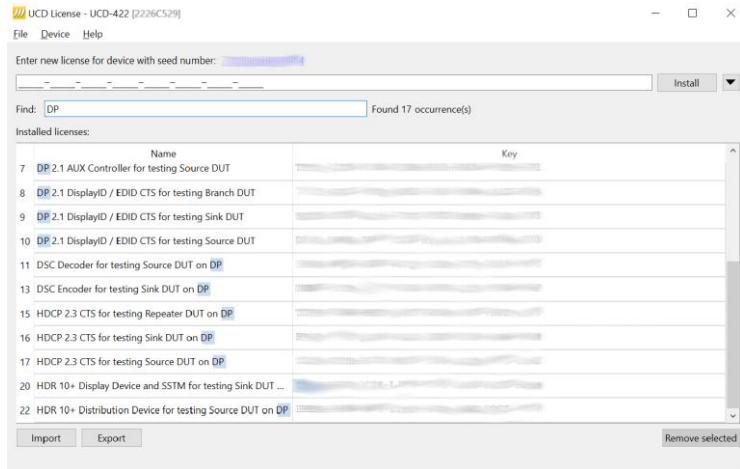
License keys are managed with **UCD License Manager**. The License Manager can be found in the **Tools** menu of UCD Console SW.

Note: System administrator's privileges are required for accessing the licenses.

License Manager GUI

When run, License Manager will list the licensing enabled Unigraf devices. In the list of Devices please **Select** the device in question. The *serial number* and the *seed number* of your device are printed in a sticker attached to the bottom of the device.

The **Rescan...** button will re-scan the system for installed hardware.


Managing Licenses

Seed Number

Each license is tied to a hardware unit with the help of the **Seed Number**. Each unit has a unique Seed Number. Seed Number of the selected unit can be found in the top of the dialog.

Seed Number of the selected device can be copied from dialog link for e.g., ordering Licenses.

Adding New License Keys

To add a new license key for a device, please enter the characters from the license sticker to the field for new licenses. The License Manager will automatically move the caret across the edit boxes during typing. If the key is given in text format, copy it and paste to the leftmost box.

Once the license key is fully entered, click **Install**. The license is authenticated and if it is valid, the license will appear in the list of installed licenses. If the key fails to authenticate, an error message is displayed. If this happens, please make sure that the key has been typed correctly and that the seed number on the license key sticker matches the seed number displayed in UCD License Manager.

Click the **Search** inverted triangle at the upper right to view the *Find* edit control. Enter a search keyword: The license list is updated to show names that contain the keyword.

Note that to avoid confusion, some letters will never appear in a license key because they resemble numbers: For example, capital 'G' and number '6' are very similar when printed with small font. When in doubt, use numbers.

Also, please note, that characters that cannot be part of valid license key are not accepted as input. When appropriate, an automatic conversion is applied while typing: For example, lower case letters are converted to upper case automatically.

Managing Installed Licenses

The Installed licenses list shows all installed licenses for the selected device. The list shows the name of the license and the actual license key characters.

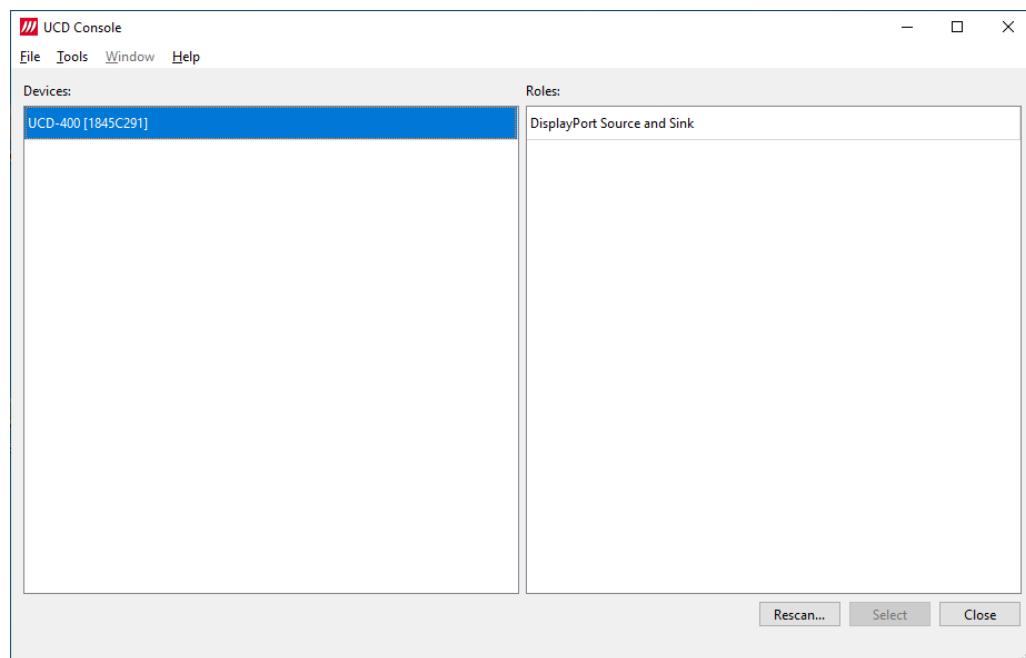
Import: Install licenses from an INI file for the currently selected device.

Export: Save installed licenses for the currently selected device into an INI file for backup and distribution to other PCs.

To export license(s), select the license(s) to be exported and then click the Export button. Please note that licenses from multiple devices can be exported into the same INI file.

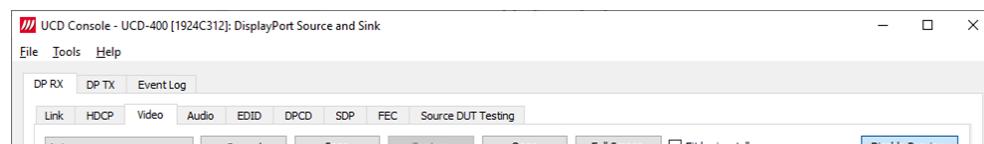
Remove Selected: Uninstall selected licenses. To uninstall a license, click on the license and then click the Remove Selected button

UCD Console

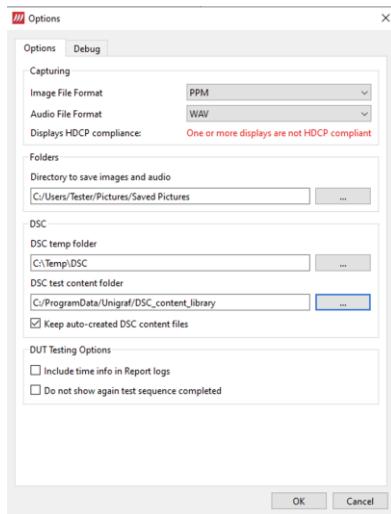

UCD Console SW is graphical user interface (GUI) for UCD family test equipment for desktop use. UCD Console provides the user access to all features of the unit. UCD Console also includes powerful debugging and analysis tools enabling the user to monitor the status of the display interfaces and assist in problem detection.

The various features of the UCD unit are divided into interface specific screens and tabs. Each tab contains data and controls for a specific feature.

Device Selection


A shortcut of UCD Console can be found by default under Start Menu.

Once UCD Console is launched, the dialog provides a list of Unigraf UCD devices connected in the PC. Please select the target device by double clicking on the appropriate row. If your device cannot be found in the list, please confirm the power and USB connection to the device and click the **Rescan** ... button.


Analyzer and Generator Operation

Most UCD devices can be used with UCD Console as Analyzer (a Sink device) and as Generator (a Source device). The functionalities of the two operation modes can be found in separate tabs. This User Manual will explain both roles and all role functionalities.

Options

Options can be found in **Tools > Options**.

Image File Format

You can save the captured frames either in PPM, BMP, JPG or PNG bitmap file format. In PPM format the files are stored with the captured color depth, with other formats the color depth is truncated to 8 bits per color.

Audio File Format

Audio files are stored in WAV format.

Displays HDCP Compliance

Information if controlling PC is HDCP compliant, i.e. if preview of HDCP encrypted content can be enabled. If the display is non-HDCP compliant or when connected to the PC using RDP (Remote Desktop Protocol) then users will be presented with a blue background with a banner stating 'HDCP unauthorized'. HDCP is currently only supported on Windows OS and not supported on MacOS and Linux.

Folders

Please select the directories in the PC for saving the captured images and audio.

DSC

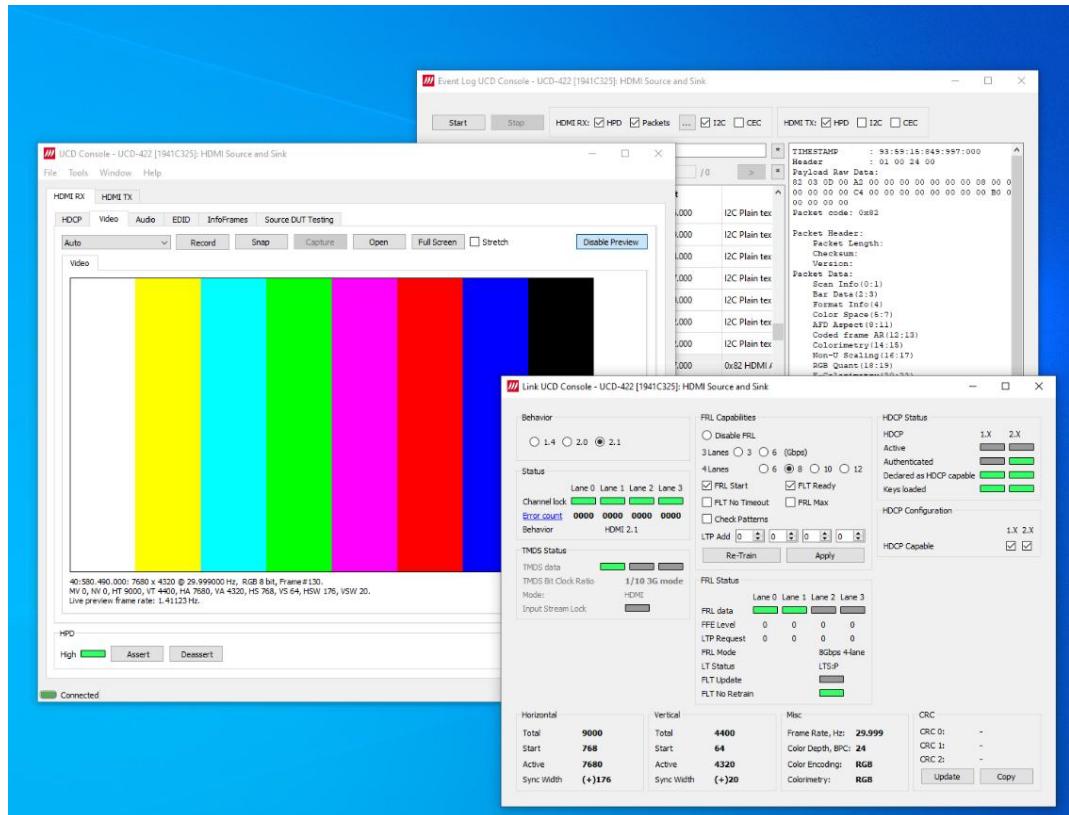
<i>DSC temp folder:</i>	Folder for DSC Work files.
<i>DSC test content folder:</i>	Folder where DSC source bitmap files, related configuration files and DSC conversion tools are stored.
<i>Keep auto-created DSC content files:</i>	By default, the DSC compressed content is deleted after use. If selected, the content is not deleted.

Warning

Keeping the automatically created DSC compressed content will shorten the time needed for running the DSC compliance tests.

Please note, that the space needed for storing the full library **can be very large** (appr. 400 GBytes). Please make sure that the content will be stored in a medium that has the required space available.

DUT Testing Options


Configure DUT Testing reports.

<i>Include time info in Report logs:</i>	Include system date and time in the beginning of each event line in created reports.
<i>Do not show again test sequence completed:</i>	Include system date and time in the beginning of each event line in created reports.

Detaching and Cloning Tabs

Most of the UCD Console tabs can be detached into a separate window for monitoring and controlling separate features simultaneously. To detach a tab **Right-click** on a tab and select **Detach Window**. To glue the tab back to the main window, click on the red **Close button** in the top right-hand corner of the window or press **<Alt> + F4** on the keyboard.

Tabs can also be cloned (duplicated) in order to e.g., monitor various areas of DisplayPort DPCD simultaneously without swapping addresses. To clone a tab **Right-click** on a tab and select **Clone Tab** or **Clone and Detach** to the two actions simultaneously.

4. ANALYZER OPERATION

When used as an *Analyzer*, the UCD device acts as HDMI Sink or Receiver device.

Analyzer functionality related controls and dialogs can be used by selecting *HDMI RX* tabs.

Please note that in most UCD-4XX Series units, *Generator* functionality is available simultaneously with Analyzer. Please find the description of Generator functionality later in this manual.

Functionality Tabs

UCD Console features are presented in tabs. Standard tabs are similar in all functional roles, Interface Specific tabs present features and controls that are only available for a particular interface.

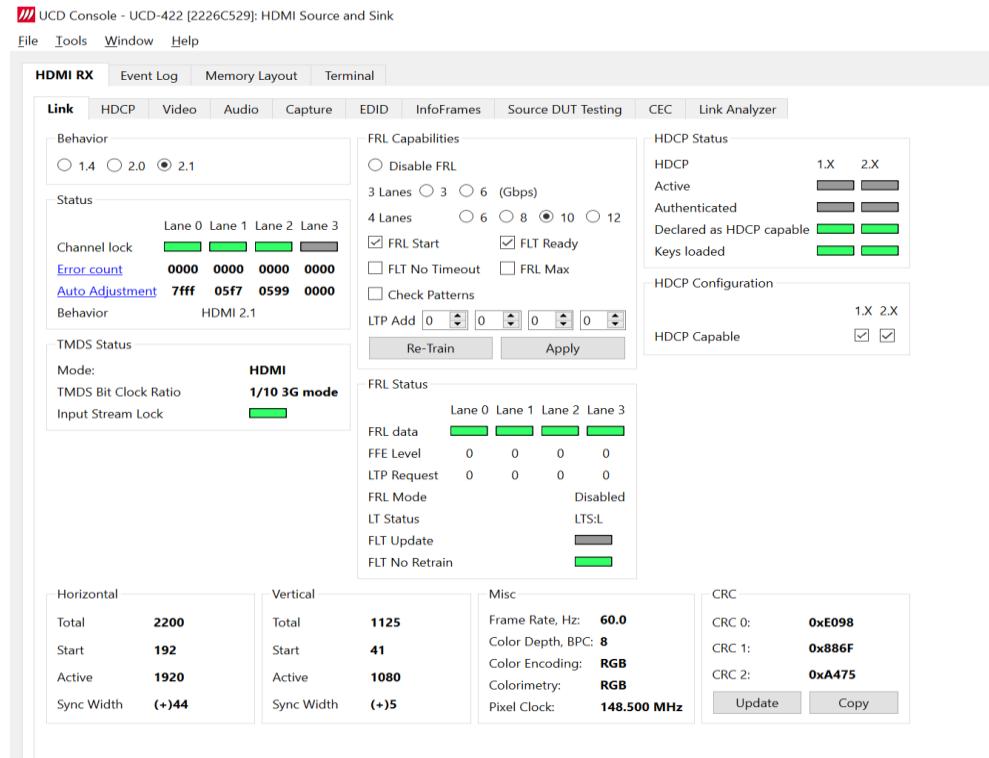
Some of the tabs are enabled by default, some only when an applicable license is included.

Functionality Tabs

Analyzer role features the following tabs:

- Video preview and saving (Video)
- Audio monitoring and saving (Audio)
- EDID editor (EDID)
- HDCP status monitor and control (HDCP)
- Source DUT Testing tab
- Event Log
- Status information and control of the upstream link (Link)
- Received InfoFrame packets (InfoFrame).

Note: Some of the tabs are enabled by default, some only when an applicable license is included. Please refer to Appendix B Licensing of this document for description of features and licensing.

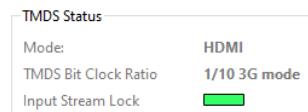


Functionality Tabs

Link Tab

Link tab contains the following: Behavior, Status, TMDS Status, FRL Capabilities, FRL Status, Audio Return Channel, HDCP Status and Configuration, Video Status and HPD.

Behavior

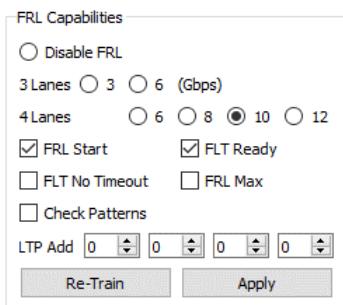

Selection of HDMI operation mode: HDMI 1.4, HDMI 2.0 or HDMI 2.1.

Please perform HPD *Deassert - Assert* after change of mode.

Status

<i>Channel lock:</i>	Status of Channel Lock in the four lanes and currently selected HDMI mode
<i>Error count:</i>	Contents of the SCDC Error counter registers of the UCD-422 Sink.
<i>Auto Adjustment</i>	Adjustment errors on lanes.
<i>Behavior:</i>	Assigned HDMI mode

TMDS Status (Only in TMDS Mode)


Mode: Indication of HDMI / DVI mode

TMDS Bit Clock Ratio: TMDS Bit Period / TMDS Clock Period ratio (1/10 or 1/40)

Input Stream Lock: Indication of TMDS character lock

FRL Capabilities (Only in FRL Mode)

FRL Capabilities allows the user to change the way the Sink capabilities are announced in the SCDC capability registers of the UCD-422 Sink.

Disable FRL: Disable FRL mode

Capability Radio Buttons: Selection of the maximum link count and link rate capability of UCD-422 sink. Written to FRL_Rate configuration register of UCD_422 Sink. Please click **Re-train** to apply

FRL Start: Control of the HDMI sink's FRL_start bit (1/0)

FLT Ready: Control of the HDMI sink's FLT_ready bit (1/0).

FLT No Timeout: Status of the HDMI sink's FLT_no_timeout bit (1/0)

FRL Max: Status of the HDMI sink's FRL_Max bit (1/0)

Check Patterns: If Check Patterns in unselected then there's no pattern verification during link training

LTP Add: Additional Requested Link Training pattern in HDMI sink's LnX_LTP_req (X=0-3) register.

Re-Train: Request a new link training

Apply: Store new settings

FRL Status (Only in FRL Mode)

FRL Status displays the status of the link training and the link parameters negotiated between UCD-422 Sink and the Upstream Source. The status is updated automatically.

FRL Status				
	Lane 0	Lane 1	Lane 2	Lane 3
FRL data				
FFE Level	0	0	0	0
LTP Request	0	0	0	0
FRL Mode	10Gbps 4-lane			
LT Status	LTS:P			
FLT Update				
FLT No Retrain				

<i>FRL Data 0/1/2/3:</i>	Indication of data flow in FRL links 0 to 3
<i>FFE Level:</i>	Status of Feed Forward Equalizer Level that HDMI transmitter is using (only in FRL mode)
<i>LTP Request:</i>	Currently requested FRL link training pattern.
<i>FRL Mode:</i>	Lane count and link rate configuration used in FRL mode
<i>LT Status:</i>	Status of the FRL Link Training State
<i>FLT Update:</i>	Status of the UCD-422 sink's FLT_update bit (1/0) (only in FRL mode)
<i>FLT No Retrain:</i>	Status of UCD-422 Sink's FLT_no_retrain bit (1/0) (only in FRL mode)

HDCP Status

Copy of the status from HDCP Tab. Please refer to chapter *HDCP Tab* later in this document for detailed description.

HDCP Status		
	1.X	2.X
Active		
Authenticated		
Declared as HDCP capable		
Keys loaded		

HDCP Configuration		
	1.X	2.X
HDCP Capable	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>

HDCP Configuration

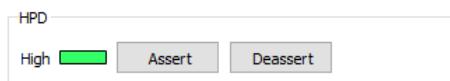
Enable and disable HDCP 1.4 or HDCP 2.3 capability of UCD-422 Sink. Duplicates of the controls found in HDCP tab.

Video Status

Video Timing and Color Details as retrieved from stream metadata. Frame rate is measured by UCD-422 Local Sink.

Horizontal		Vertical		Misc		CRC	
Total	2200	Total	1125	Frame Rate, Hz:	60.0	CRC 0:	0xE098
Start	192	Start	41	Color Depth, BPC:	8	CRC 1:	0x886F
Active	1920	Active	1080	Color Encoding:	RGB	CRC 2:	0xA475
Sync Width	(+44)	Sync Width	(+5)	Colorimetry:	RGB	Update	Copy
				Pixel Clock:	148.500 MHz		

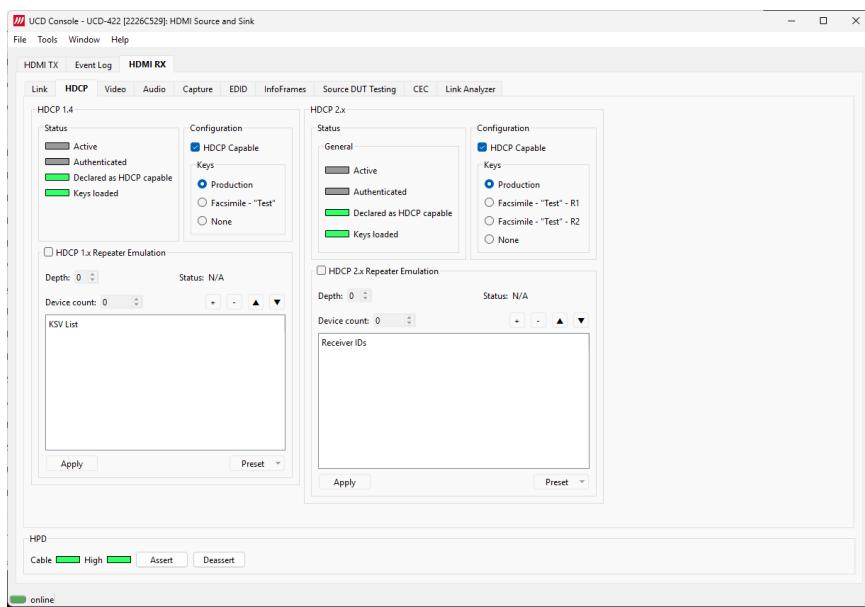
CRC


The 16-bit **CRC** (checksum, cyclic redundancy check) values of the three color components calculated by the Sink hardware. To re-calculate, click **Update**. Click **Copy** to store the information to the clipboard.

HPD

High: LED indicates that the HPD signal is Asserted (logical “high”).

Deassert: Click button to set HPD line to logical “low” (de-asserted) and hence no HPD pulse can be generated.


Assert: Click to re-activate the HPD line (set to logical “high”).

HDCP Tab

HDCP tab is the dialog for monitoring the HDCP (for *High-Bandwidth Digital Content Protection*) status and controlling the HDCP capabilities of the UCD device.

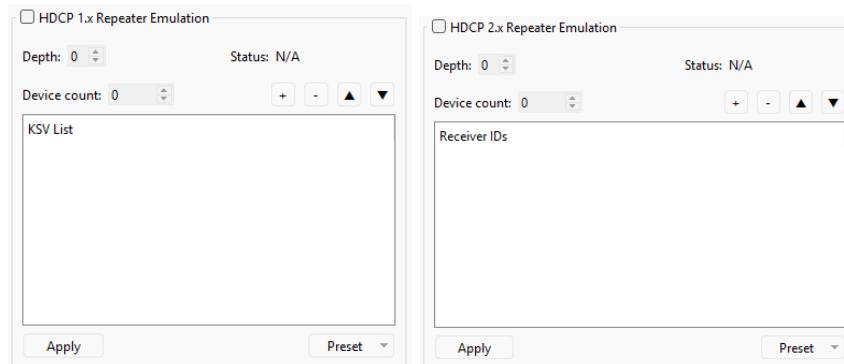
Status

The status field indicates the HDCP status of the UCD device.

Active: The link between UCD and the upstream source has been encrypted.

Authenticated: The HDCP handshake between the UCD and the sink unit has been completed successfully.

Declared as HDCP capable: The UCD unit recognizes HDCP handshake messages.


Keys loaded: The HDCP keys are loaded to the UCD unit.

SST Mode Type Type when in SST mode (DP).

Configuration

HDCP Capable: To inform source DUTs that TE (UCD device) is HPCD capable or not. Uncheck to disable.

HDCP 1.x and HDCP 2.x Repeater Emulation

For HDMI the UCD device can simulate a HDCP repeater. Check the *Repeater Simulation* box to enable the rest of the controls.

<i>Depth:</i>	Depth of <i>Repeater</i> (maximum 4).
<i>Device count:</i>	The number of devices that act as repeaters (maximum 32).
<i>KSV Value</i>	KSV value assigned to each device.
<i>Receiver IDs</i>	Receiver IDs
<i>Status</i>	Shows HDCP authentication of repeater.

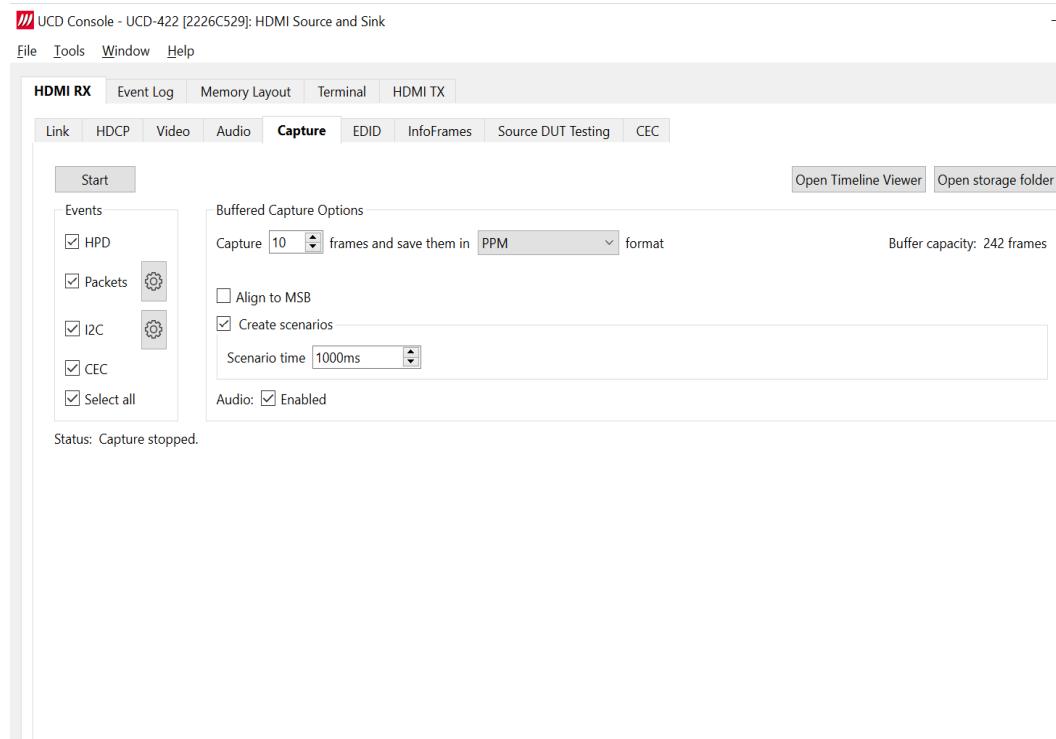
The *Device count* can be change via the spinbox or the +/- buttons.

Inverted triangles are used to navigate the *KSV* rows.

Use the *Preset* dropdown to *Save*, *Load* and *Remove* named (saved internally) sets.

Use the *Import* and *Export* options to load and save to files.

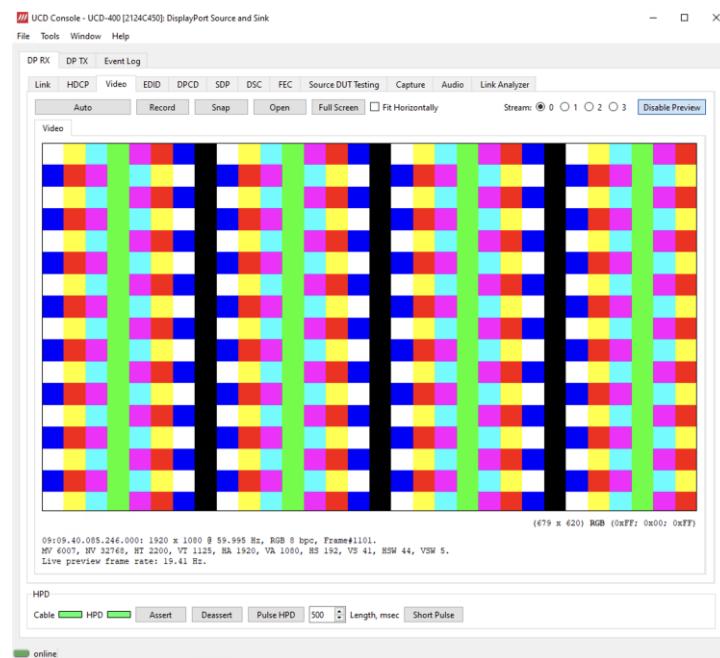
Press *Apply* to apply settings.


Keys

Select between *Production* or *Facsimile* HDCP keys. To remove the keys, select *None*.

Capture Tab

UCD device has an internal frame buffer that can be used for continuous capture of video data. In addition, audio and metadata can be captured and saved for later analysis.


HDMI Events see *HDMI Link Analyser Tab Events*.

<i>Start / Stop</i>	Start or stop capturing. Button label changes per action.
<i>Capture N frames:</i>	The number of video frames to capture.
<i>Format:</i>	Selection of the format of the saved video frame bitmaps. BIN, PPM, BMP, BIN + PPM, BIN + BMP.
<i>Buffer capacity:</i>	The number of video frames that can be stored to UCD frame buffer using current video signal format.
<i>Align to MSB</i>	Store binary data aligned to the Most Significant Bit (MSB). When this is left unchecked the binary data is aligned to the Least Significant Bit (LSB).
<i>Create scenarios</i>	Define the length of the scenario.
<i>Events:</i>	Please refer to chapter <i>Event Log</i> for details of the captured events.
<i>Audio:</i>	Enable audio.
<i>Status:</i>	Status of the capture.
<i>Open Timeline Viewer</i>	Open Event Timeline Viewer to view the captured data. For detailed instructions refer to chapter seven of this manual.
<i>Open storage folder:</i>	Data save folder is defined in menu Tools > Options. Captured video, audio and data is saved in a subfolder of this folder. The name of the subfolder is "buffered_capture_yyyymmdd_hhmmss" (e.g., buffered_capture_20210301_130532).

Video Tab

Video tab is the Preview window for the captured video stream.

Disable / Enable Preview

Click the button to start or stop capturing video frames.

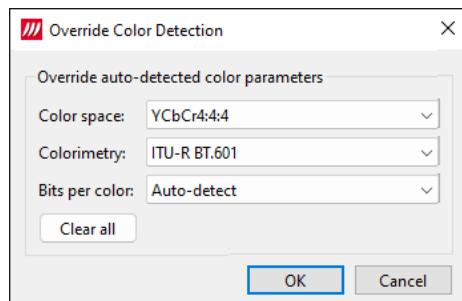
Video Status

The details of the captured video are presented below the preview window.

09:19.30.975.164.000: 1920 x 1080 @ 59.995 Hz, RGB 8 bpc, Frame#12404. MV 6007, NV 32768, HT 2200, VT 1125, HA 1920, VA 1080, HS 192, VS 41, HSW 44, VSW 5. Live preview frame rate: 19.55 Hz.	
<i>First row:</i>	Cursor location, pixel value at cursor location in YCbCr and RGB
<i>Second row:</i>	Time stamp, Color mode, color depth, frame counter.
<i>Third row:</i>	Mvid, Nvid, Horiz Total, Vert Total, Horiz Active, Vert Active, Horiz Start, Vert Start, Hor Sync Width, Vert Sync Width.
<i>Fourth row:</i>	Live preview frame rate.

Note: HDCP preview is only available on UCD Console for Windows operating system.

Please note that UCD test equipment are able to capture video at full frame rate.


Live preview frame rate indicates the rate of updating captured video on UCD Console preview screen. The rate is limited e.g by the USB communication between UCD test equipment and the PC.

Override Color Detection

Auto

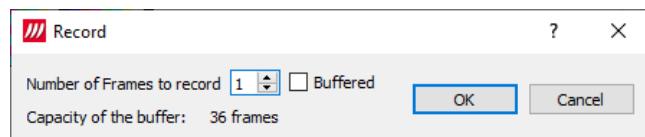
The captured video will be by default automatically converted to RGB 8 bpc for preview and saving based on the information in video metadata.

By clicking Auto button, a dialog opens for overriding the automatic conversion. Captured image data will be interpreted based on the values set in the dialog.

Color space: Define as which format captured data will be interpreted.
(Auto-detect, RGB, YCbCr4:4:4, YCbCr4:2:2, YCbCr4:2:0)

Colorimetry: Define as which colorimetry captured data will be interpreted.
(ITU-R BT.601, ITU-R BT.709, ITU-R BT.2020)

Bits per color Define as which color depth captured data will be interpreted.
(Auto-detect, 6, 8, 10, 12, 16)


Note: Please note that the color mode selection applies to the preview window only. All internal functions use the raw image data as captured from the input channel.

Frame recording

Record

Clicking the button opens a dialog for definition of number of frames recorded. Buffered mode can also be enabled in this dialog.

Buffered When checked, all input frames are captured non-drop until the on-board frame buffer will be full.

When not checked, only one input frame is buffered at a time. Frames will be skipped if the transfer of the data to the PC is slower than the input data rate.

Capacity of the buffer Capacity of the on board frame buffer with the selected video and color mode.

Note: Please note that buffered mode cannot be used when Audio preview is enabled.

Recorded frames are stored by default in C:/Users/<Current user>/Pictures. Please refer to Tools > Options where the location of this folder can be customized.

Open

Open

Open folder where captured frames are stored. Double click or click **Open** to select a frame file for viewing. Please refer to Tools > Options where the location of this folder can be customized.

Full Screen

Full Screen

Preview captured video full screen, scaled to vertically fit the screen.

Double-click on the screen to exit full screen mode.

Snap Frame

Snap

When clicked, one frame of the incoming video is captured and shown in a new tab. Each click captures a new frame and opens a new tab.

Color Information of the captured frame can be evaluated by placing the mouse cursor on top of the preview image.

Info field in the lower right side of the bottom panel lists:

- Location of the cross cursor on the bitmap starting from the upper left corner
- The intensity of the Red, Green and Blue components of the pixel on the cursor location in decimal values
- The HTML HEX color code of the pixel on cursor location
- In case of YCbCr color mode the intensity of the Y, Cb and Cr components of the pixel on the cursor location in decimal values

Zoom

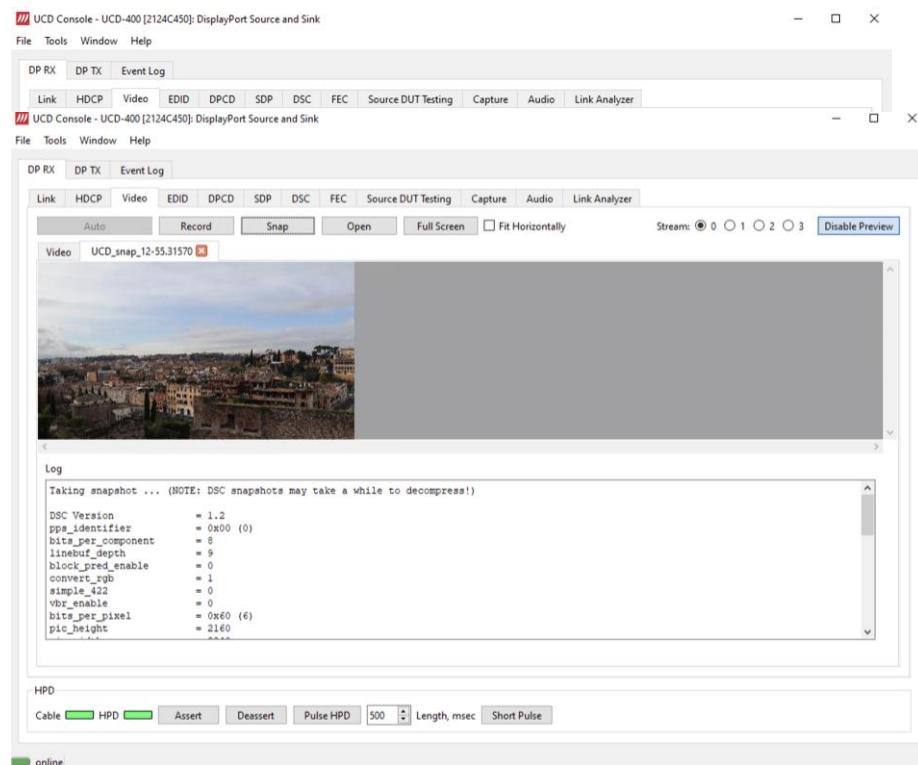
Zoom level of the captured frame can be altered by right clicking on top of the preview image and selecting between

- Fit Window
- Zoom 25%, 50%, 100%, 200%, and 500%

Save Frame

The captured frame current tab can be saved to a bitmap file in the PC by right clicking on top of the preview image and selecting **Save as....** The format and storage location can be selected in the opening dialog. The available bitmap formats are BMP, JPG, PNG and PPM.

Note: In PPM format the files are stored with the captured color depth, with other formats the color depth is truncated to 8 bits per color.

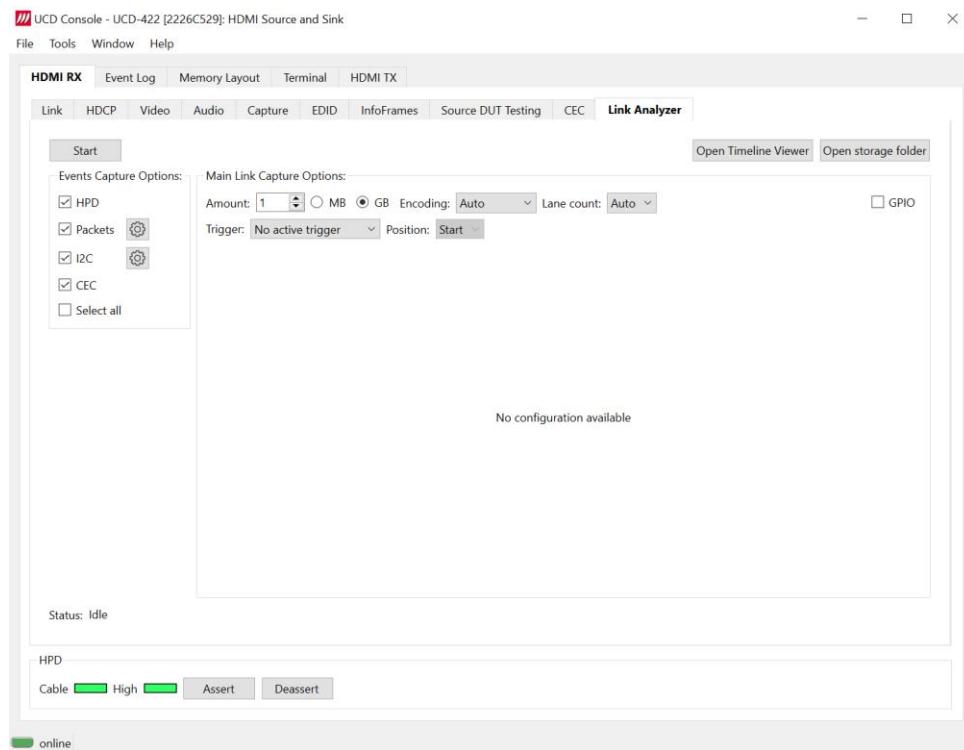


The selections in Tools > Options menu define if the frame bitmap will be stored as captured from the display interface or if the color mode conversion selected for preview will be applied.

Previewing DSC Decompressed Stream

In order to capture and preview DSC compressed video DSC must be enabled in *Link Capabilities* dialog in Link tab.

Select **Enable Preview** to verify that DSC compressed stream is received.



Click **Snap** button to capture one frame and start the decompressor (offline in the PC). Once the decompression is ready, the frame is shown, and *Log* lists the details of the compressed image. A snapped DSC image can be saved as a DSC-file.

HDMI Link Analyzer Tab

Capture Data Events for analysis with *Link Timeline Viewer*. See chapter [Link Timeline Viewer](#) for details.

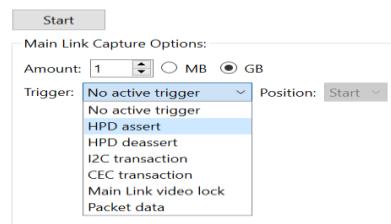
Link Analyzer buttons

Start Start capturing main link data using *Main Link Capture Options*.

Open Timeline Viewer Open Link Timeline Viewer. See [Timeline Viewer](#).

Open storage folder Open folder in the PC where capture data is stored. Folder is the video storage folder defined in *Tools > Options*.

Captured video, audio and data is saved in a subfolder of this folder. The name of the subfolder is "capture_yyyymmdd_hhmmss). (e.g. capture_20210215_093351).

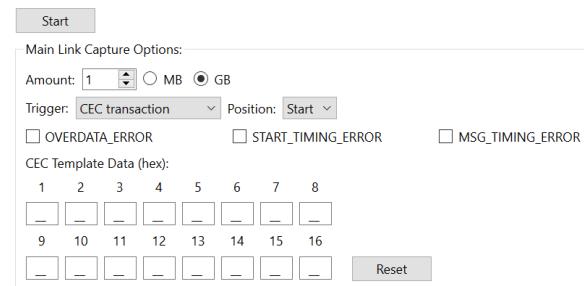

Main Link Capture Options

Amount: The amount of data logged to buffer. Buffer size 2 GBytes maximum.

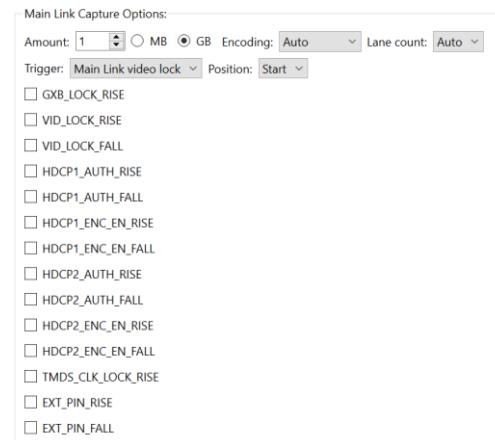
Trigger Point Options

Data capture start can occur with or without defined trigger criteria.

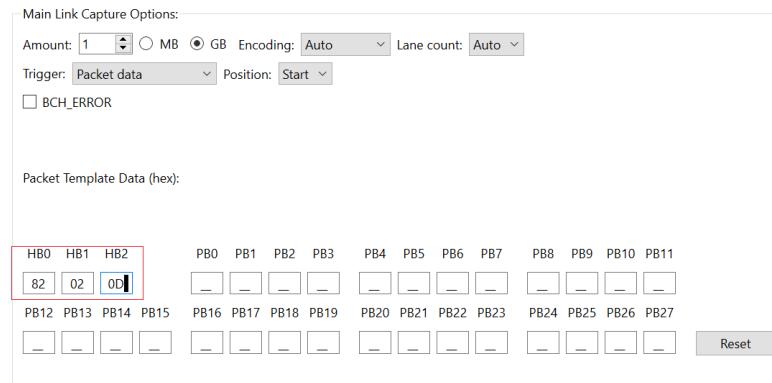
Trigger criteria dropdown has four options: No active trigger, HDP assert, HDP deassert, I2C transaction, *CEC transaction*, *Main Link video lock* and *Packet data*.



When *I2C transaction* is selected, a drop down list box is enabled and visible with options: *Write*, *Read* and *Any*. Two spinboxes are enabled for *I2C Device Address* and *I2C Register Address*.



When *CEC transaction* trigger is selected, available trigger options are shown below.


Select trigger options via checkboxes *OVERDATA_ERROR*, *START_TIMING_ERROR* and/or by filling in the *CEC Template Data (hex)* values.

When the *Main Link video lock* trigger is selected, available checkboxes are *GXB_LOCK_RISE*, *VID_LOCK_RISE*, *VID_LOCK_FALL*, *HDCP1_AUTH_RISE*, *HDCP1_AUTH_FALL*, *HDCP1_ENC_EN_RISE*, *HDCP1_ENC_EN_FALL*, *HDCP2_AUTH_RISE*, *HDCP2_AUTH_FALL*, *HDCP2_ENC_EN_RISE*, *HDCP2_ENC_EN_FALL*, *TMDS_CLK_LOCK_RISE*, *EXT_PIN_RISE*, and *EXT_PIN_FALL*.

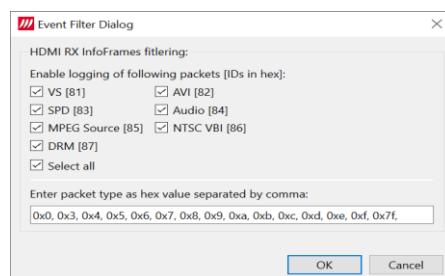
When *Packet data* is selected: Checkbox *BCH_ERROR*, when checked, will start capture when a *BCH_ERROR* error occurs (and only when one has occurred). Fill out *packet Template Data (hex)* to filter events to start capture. Shown below is a trigger for *AVI Infoframes* in general.

Position

Triggered capture timepoints available are: *Start*, *25%*, *50%*, *75%*, *End*.

Events

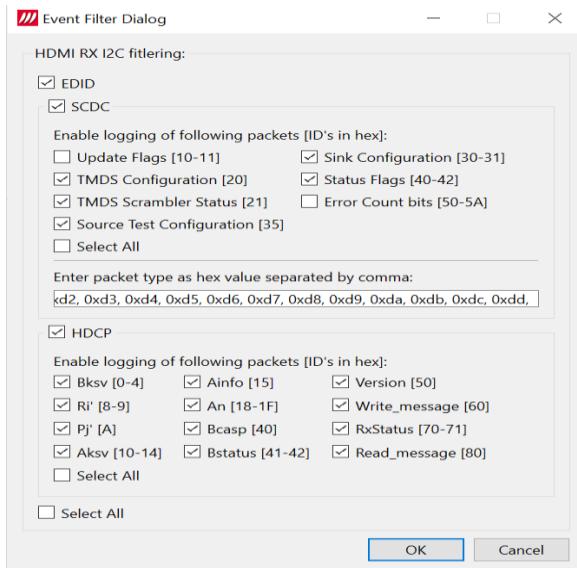
The following events can be selected via checkboxes:


HPD

Status and status changes of Hot Plug Detect (HPD) signal

Packets

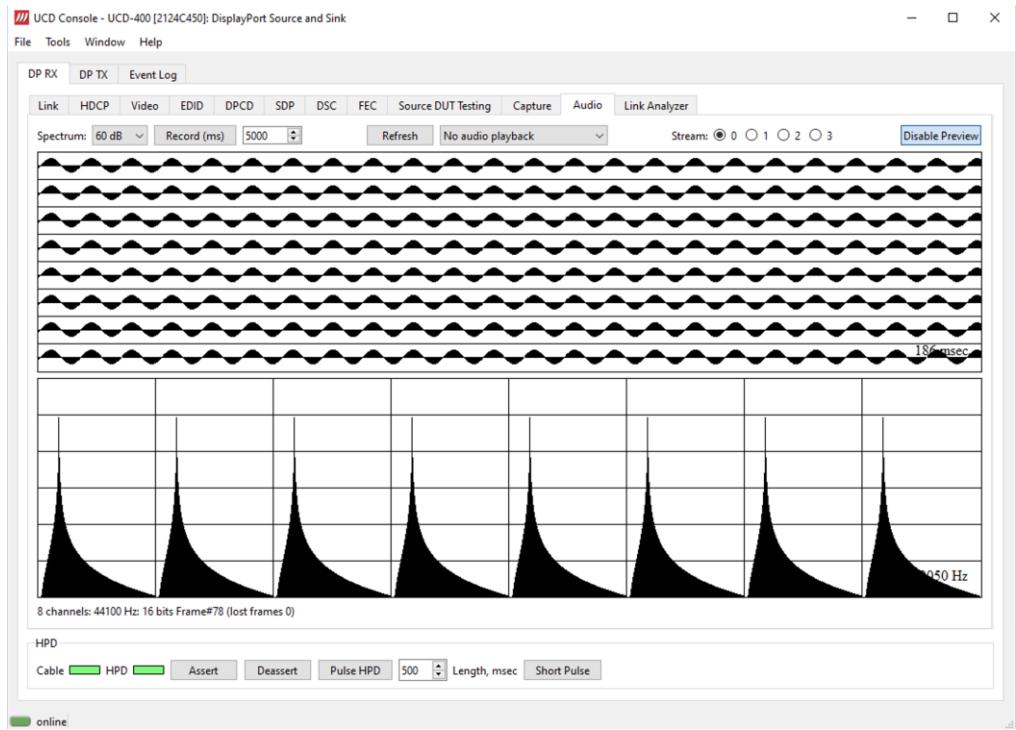
HDMI infoframes. Click the button to open the *Event Filter Dialog*.


Packet events without checkboxes can be added via the *Enter packet type edit control* (0x2 for audio sample for example).

I2C

Capture I2C communication. Click the button to open the *Event Filter Dialog*.

Use edit control *Enter packet type as hex separated by comma:* to add packets manually.


CEC

Capture CEC communication.

Audio Tab

Audio tab has a preview of the audio signal format and the controls for audio playback and recording. Up to eight channels will be shown based on the received audio stream.

The audio signal format is shown in three ways.

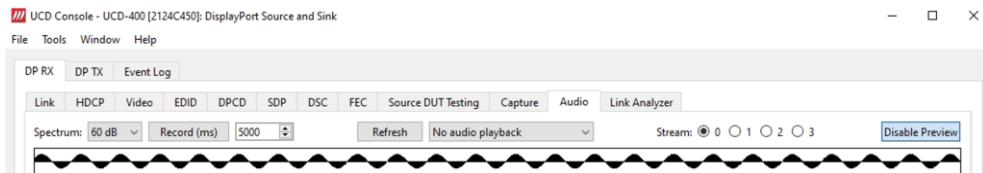
- The ‘oscilloscope’ panel displays the waveforms of the received audio channels.
- The frequency spectrum of the audio is shown in the lower panel. The range of the spectrum display is from 0 to 1/2 of the input sampling rate. The amplitude scale of the spectrum display can be selected between ‘Linear’ to 100 dB.
- The span of the oscilloscope preview window is defined with **Playback buffer** found in Tools > Options dialog. The value is given in ksamples (1024 samples). The relation between the preview window span in milliseconds (msec) and the value given in *Playback buffer* depends on the sampling frequency. Please do not exceed the *Main buffer* set in the same dialog. Please refer to description of the *Video Audio and Misc Options* earlier in this document.

Enable Preview / Disable Preview

This button controls capturing the audio data.

Select Monitored Stream

When Multistreaming (MST) is enabled, the monitored stream can be selected from **Current Stream** selection in the bottom of the dialog.



Note:	Please note that if the captured audio signal is constant, and audio signal frequency and audio sampling rate (e.g. 1000 Hz audio and 32 KHz sampling) match audio preview sampling rate, the ‘oscilloscope’ panel will seem static. Signal capture can be verified by ensuring that Frame # below the panels is increasing.
-------	--

Playback device selection

The captured audio can be played back in the PC. The combo-box defines the audio device in the host PC through which the captured audio is played. By default, *No audio playback* is selected.

Note:

Please note that the audio capabilities of the audio playback device of the PC are not automatically reflected in the audio capabilities description in UCD-4XX EDID. Since UCD-4XX is not performing any audio format conversion, it might occur that the source provides an audio format that the selected playback device does not support. In case a conflict occurs, please change manually the EDID content or disable audio playback to monitor the waveforms in UCD Console.

Refresh audio device list

Click here to re-read the list of audio devices after making changes to the host PC configuration.

Audio Buffer Size

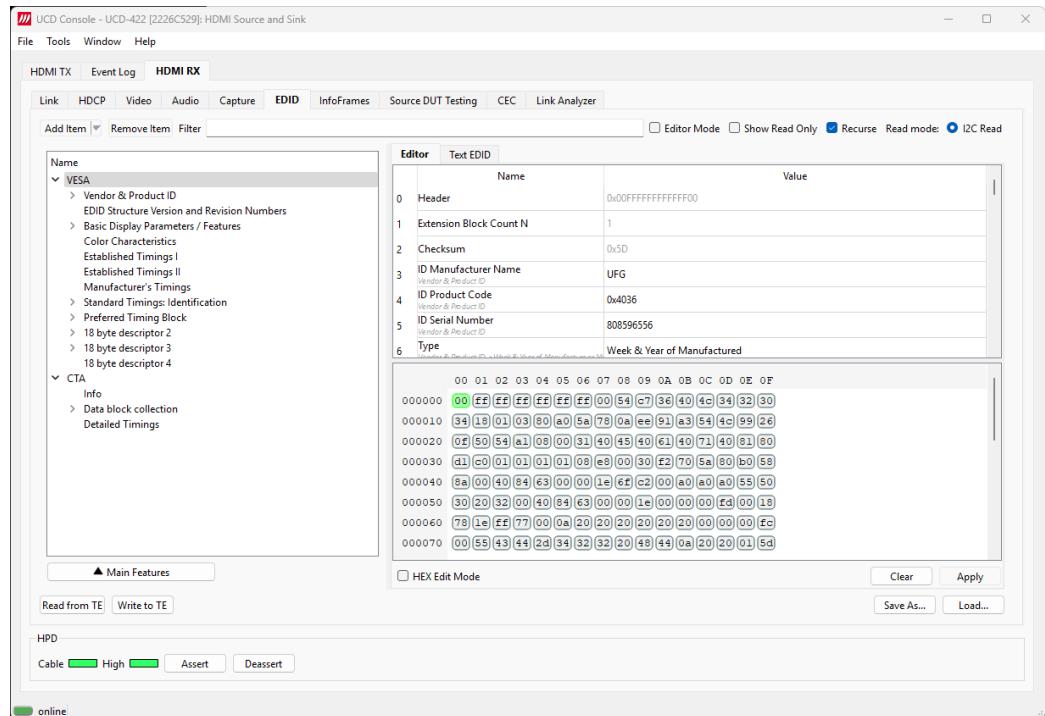
The amount of buffering used in the data transfer between the UCD-4XX unit and the PC in Audio buffer size in Tools > Options dialog, Main buffer. Increased buffer size will ensure a smooth audio output but will also increase the delay between the capture of the audio stream and its playback.

Start audio recording

The captured audio can be recorded in the PC using Waveform Audio File Format, WAV (*.wav) format. Recording duration is defined in milliseconds (ms). The folder where the audio file will be saved can be selected in Tools > Options.

Input audio mode

2 channels: 44100 Hz: 16 bits Frame #413 (lost frames 0)


This field (in the bottom of the dialog) indicates detected audio mode in the input stream and the number of audio packets captured.

EDID Tab

EDID Tab provides tools for accessing the EDID data of the UCD Sink presented to the connected Source Device. There are three basic functions:

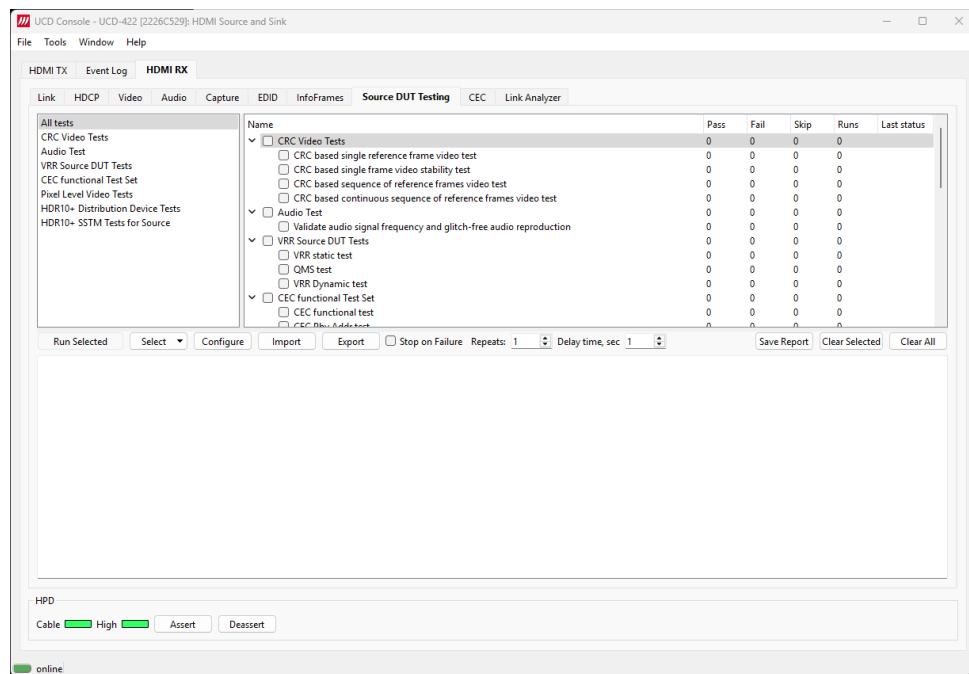
- Load and save data files on the host PC.
- Edit contents in *Editor Mode* or the *Hex Edit Mode*.
- Read and write to EDID memory for up to 4 virtual ports.

EDID

With *Load...* and *Save As...* a file can be read or written to from a PC. Please note that the program does not alter the contents of the file or verify its integrity during load and save operations.

Note: Four blocks (512 bytes) are read. If the device does not support all four blocks, the non-supported data is replaced with zeros.

Text EDID


The *Text EDID* tabs allow viewing data in tree form.

EDID Editor

Please see the description of the EDID editor in Chapter [EDID/DisplayID Editor](#) later in this document.

Source DUT Testing Tab

Please refer to *Appendix E* for descriptions of the tests available. The tests are presented in a split view, the right being test categories and the left being the tests in them.

Select the tests for execution by checking checkboxes or by clicking the test name. *All tests* item on the left hand side is really just for viewing all tests available. Select the desired test category when running tests.

<i>Run/Run Checked:</i>	Select to start selected/checked tests. Once tests are running the <i>Run Checked</i> button is relabeled <i>Abort</i> to stop the test sequence if desired.
<i>Select:</i>	Includes three sets of options: <i>Select All</i> , <i>Clear All</i> , <i>Invert All</i> for changing the tests current selections; <i>Save</i> (checked items), <i>Load</i> (and check relevant items), <i>Remove</i> (named tests list) for handling named templates; <i>Import</i> (check all items contained in file) and <i>Export</i> (save all checked items to file) for loading and saving file-based templates. Do not confuse <i>Import</i> and <i>Export</i> with those below: These are for setting and saving tests to run.
<i>Configure:</i>	Opens a test parameters dialog for the selected test set. Make sure a test category other than <i>All tests</i> is selected. Refer to <i>Test Parameters</i> below for details.
<i>Import:</i>	Load saved test parameter files (*.td or *.json) for into UCD Console. Select <i>Configure</i> to see current parameters. Loading *.td files to UCD Console is currently unreliable.
<i>Export:</i>	Save test parameters for later use or for use in test automation. For saving parameters for later use in UCD Console, either format can be used. For saving parameters for TSI scripting, please use *.td files. For use with Python applications, use *.json files.
<i>Stop on Failure:</i>	Stops execution of tests if one fails.
<i>Repeats:</i>	Number of times to repeat the selected test sequence.
<i>Delay time:</i>	Delay in seconds between individual tests.

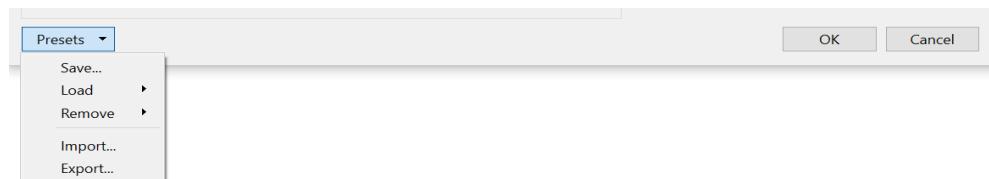
On completion of each test the result of the test is displayed in the table columns on the right. For each test the table lists the number *Pass*, *Fail*, *Skips*, *Runs* and *Last Status* (status of last run).

<i>Save Report:</i>	Select to generate a HTML report file. This will also open a tab in the default browser and display the results.
<i>Clear Selected</i>	Clear the test results of the selected (not checked) tests results. A subsequently saved report will not include these test results.
<i>Clear All:</i>	Clear the test log view and the outstanding results.

Test Parameters

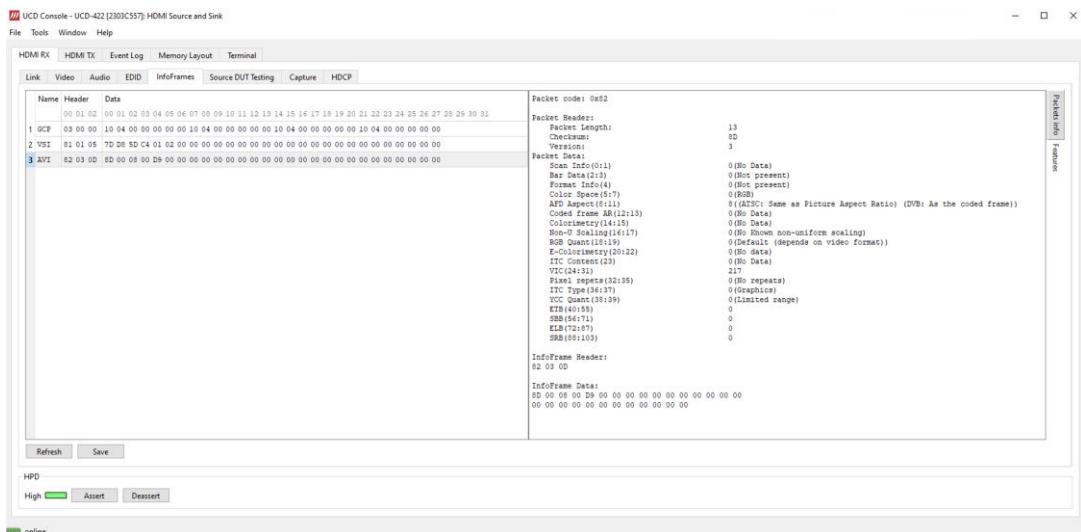
Each test suite has a dedicated set of test parameters. Select *Configure* to launch the parameters dialog for the selected tests.

See Appendix E for parameter descriptions for each test category.


Saving Test Parameters

Test parameters can be saved in various ways.

- Export parameters in *Sink DUT Testing* tab to a *.td file for later use in UCD Console, to run TSI scripts, or to share test parameters with someone. Presently importing *.td files into UCD Console is unreliable.
- Export parameters in *Sink DUT Testing* tab to a *.json file for later use in UCD Console, to run Python scripts, or to load test parameters into UCD Console.
- Save parameters in *Configure* dialog as Presets to be later used in UCD Console. See description below.


Presets

All *Configure* dialogs selected parameters can be saved and loaded via *Presets* dropdown menu. Select *Save* or *Load* for named internal configuration parameter sets. Select *Remove* to delete a named internal set. Select *Import* and *Export* for loading and saving parameter sets from and to external files. Note that *Importing* and *Exporting* *.json files here have a different format than importing those described above.

InfoFrame Tab

InfoFrame Tab displays received InfoFrames. Click **Refresh** to update the list. Show / hide the parsed data by selecting **Packet Info**.

Received InfoFrames

InfoFrames tab displays in hexadecimal format the following received InfoFrames:

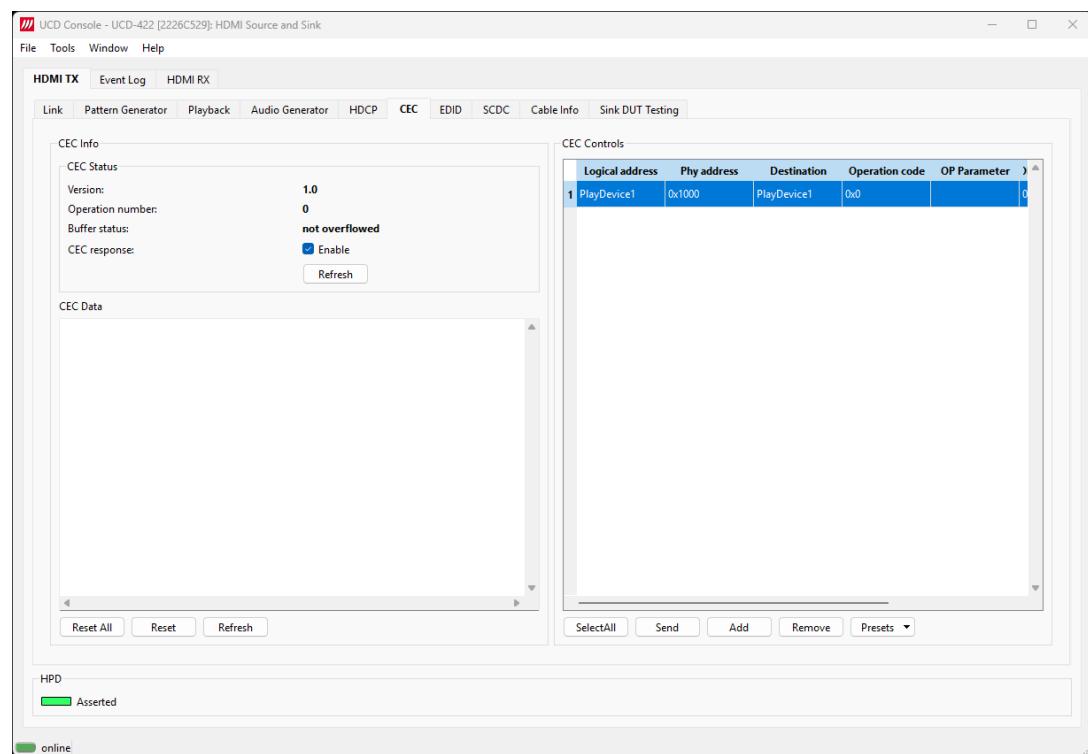
- ACR (Audio Clock Regeneration)
- ASP (Audio Sample Packet)
- GCP (General Control Packet)
- ACP (Audio Content Protection Packet)
- ISRC1 (International Standard Recording Code)
- ISRC2 (International Standard Recording Code)
- OBA (One Bit Audio sample packet)
- DTS (DTS Audio packet)
- HBR (High Bitrate Audio stream packet)
- GMP (Gamut Metadata packet)
- EMP (Extended Metadata Packet)
- 3D ASP (3D Audio Sample packet)
- 3D OBA (3D One Bit Audio sample packet)
- AMP (Audio Metadata Packet)
- MST_ASP (Multi-stream audio sample packet)
- MST_OBA (One Bit Multi-stream audio sample packet)
- VSI (Vendor Specific InfoFrame)
- AVI (Auxiliary Video Information)
- SPD (Source Product Descriptor)
- AIF (Audio InfoFrame)
- MPEG (MPEG Source InfoFrame)
- DRM (Dynamic Range and Mastering InfoFrame)

Saving InfoFrames

Infoframe packets can be saved in a file in binary format. Click **Save** and in the dialog select the packet types of choice. File name will be of format *EMP_2022-07-28T15_54_24.bin*, where *EMP* is the packet type and *2022-07-28T15_54_24* the time stamp.

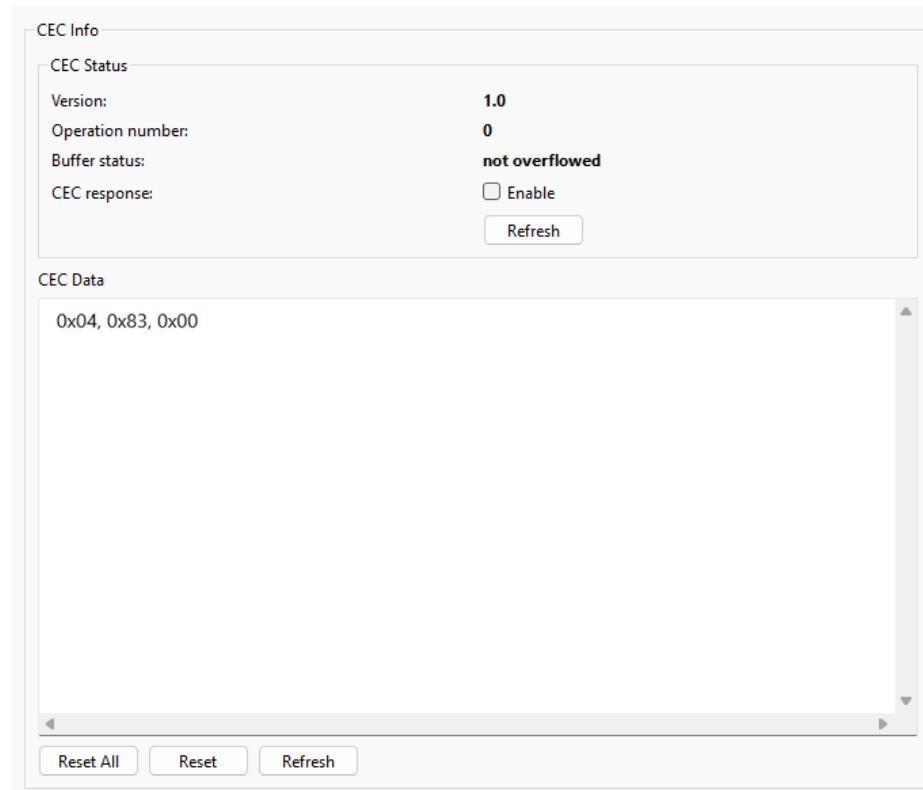
Saved packets can be evaluated and edited using *Packet Editor*. Please see section *Packet Editor* later in this document

Infoframe Features


Observe features found in infoframes by selecting **Features**.

The screenshot shows the UCD Console interface for UCD-422 [2303C557]: HDMI Source and Sink. The window title is "UCD Console - UCD-422 [2303C557]: HDMI Source and Sink". The menu bar includes File, Tools, Window, and Help. The top navigation bar has tabs: HDMI RX, HDMI TX, Event Log, Memory Layout, Terminal, InfoFrames (which is selected), Source DUT Testing, Capture, and HDCP. Below the tabs is a sub-navigation bar with Link, Video, Audio, EDID, InfoFrames, Source DUT Testing, Capture, and HDCP. A large table displays infoframes with columns: Name, Header, and Data. The Data column shows hex values. Row 1 (GCP) has a blue background. Row 2 (EMP) has a blue background. Row 3 (AVI) has a white background. To the right of the table is a legend titled "Features" with four items: Gaming VRR (green square), QMS (grey square), QFT (FVA) (grey square), and SBTM (grey square). At the bottom of the table area are Refresh and Save buttons. Below the table is a section for HPD with buttons: High (green bar), Assert, and Deassert. At the very bottom is a status bar with an online icon.

Name	Header	Data
1 GCP	03 00 00	10 04 00 00 00 00 00 10 04 00 00 00 00 00 10 04 00 00 00 00 00 10 04 00 00 00 00 00
2 EMP	7E C0 00	84 00 01 00 01 00 04 01 01 00 32 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
3 AVI	82 02 0D	0F 00 E8 E8 10 00


CEC Tab

The *CEC Tab* is used for sending and receiving CEC (Consumer Electronics Control) protocol messages and data. The *CEC Tab* is grouped into two panels: *CEC Info* and *CEC Controls*.

CEC Info

CEC data and received status can be seen in the *CEC info* panel.

<i>Version:</i>	CEC version number
<i>Operation number:</i>	CEC operation number
<i>Buffer status:</i>	Shows buffer status
<i>CEC response:</i>	Enable CEC response.
<i>CEC data:</i>	Shows CEC data received
<i>Reset All:</i>	Remove all rows
<i>Reset:</i>	Remove selected rows
<i>Refresh:</i>	Check for new data

CEC Controls

Use *CEC Controls* to send data a HDMI follower via CEC protocol.

CEC Controls					
Logical address	Phy address	Destination	Operation code	OP Parameter	OP I
1 TV	0x0	TV	0x0		0x0

Select all:

Select all added items

Send:

Transmit via HDMI CEC protocol

Add:

Add an *Operation code* with parameters to be sent to various devices

Remove:

Remove selected items.

Presets:

Save, load, remove, import and export presets

Add

Form

Logical Address: TV

Destination: TV

Physical Address: 0x0

Operation Code: 0x0

OP code param size: 0x0

OP code parameter (as hex value separated by comma):

Device Type:

TV Rec Dev

Tuner PB Device

Audio System CEC Switch

Save **Cancel**

<i>Logical address:</i>	Initiator address
<i>Destination:</i>	Destination device
<i>Physical address:</i>	Physical address of device. Auto-filled by firmware
<i>Operation code:</i>	Opcode
<i>OP code param size:</i>	The size of operand(s). Minimum is 0x0, maximum is 0xE.
<i>OP code parameter (as hex value separated by comma)</i>	Operand(s)
<i>Device type</i>	Select device type

Note: Event Log can also monitor the received CEC frames

5. GENERATOR OPERATION

When used as a *Generator*, the UCD device acts as an HDMI Source or Transmitter device. Generator functionality related controls and dialogs can be used by selecting *DP TX* or *HDMI TX* tabs.

Please note that in most UCD-4XX Series units *Analyzer* functionality is available simultaneously with Generator functionality. Please find description of Analyzer functionality earlier in this manual.

Functionality Tabs

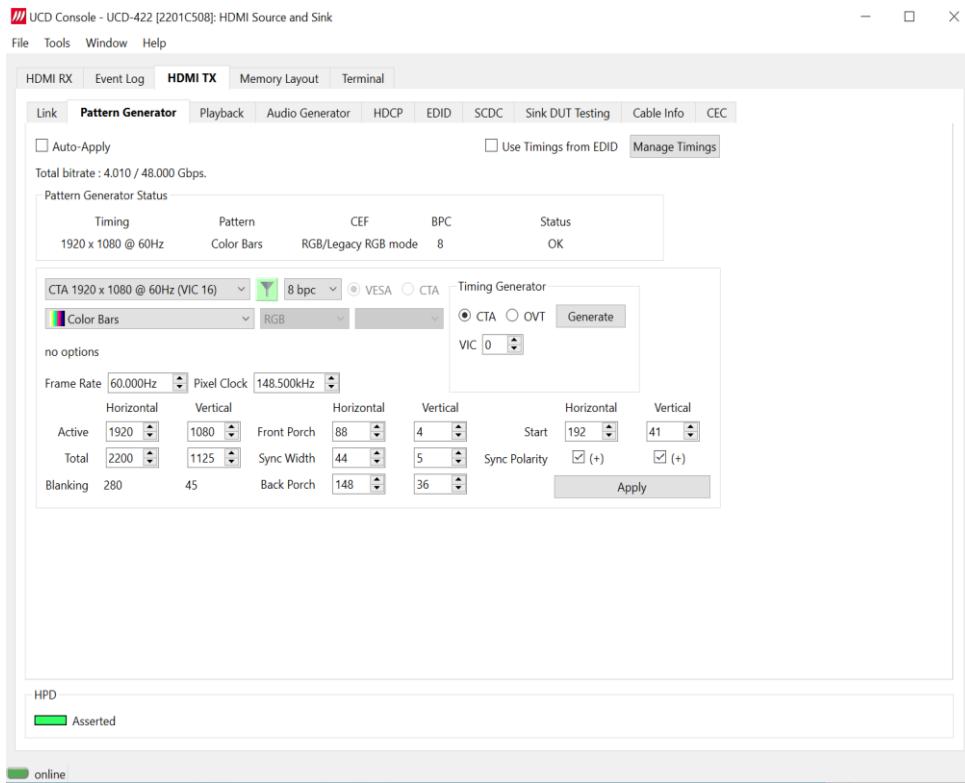
UCD Console features are presented in tabs. Standard tabs are similar in all functional roles, Interface Specific tabs present features and controls that are only available for a particular interface.

Some of the tabs are enabled by default, some only when an applicable license is included.

Functionality Tabs

Analyzer role features six standard tabs:

- Video pattern generator (Pattern Generator).
- Content Playback (Playback)
- EDID editor (EDID)
- HDCP status monitor and control (HDCP)
- Sink DUT Testing
- Adaptive-Sync
- Status information and control of the downstream link (Link).
- SCDC monitor (SCDC)

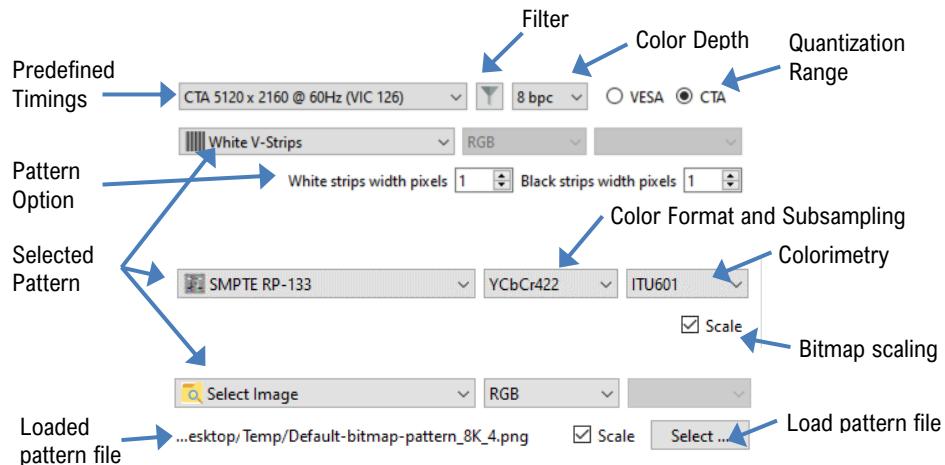


Note: Some of the tabs are enabled by default, some only when an applicable license is included. Please refer to Appendix B Licensing of this document for description of features and licensing

Functionality Tabs

Pattern Generator Tab

Note: The video modes that can be used in MST streams are limited by the overall capability of the DisplayPort link and the capability of the connected DisplayPort Sink or Branch device.


<i>Force EDID preferred timing after LT</i>	UCD reads the EDID of the connected Sink and after next LT enables to Stream 0 the timing listed in 18-byte descriptor 1 in VESA block of the sink's EDID.
<i>Use timings from EDID</i>	UCD reads the EDID of the connected Sink and lists only timings that are featured there.
<i>Manage Timings</i>	Please see chapter Manage Timings later in this manual.
<i>Total bitrate:</i>	Used link payload / Total link capability in Gbps (Pls see Note below).
<i>Auto-Apply</i>	To avoid sourcing invalid video mode combinations new settings are being validated when the user is clicking Apply. Automatic validation will be applied when <i>Auto-Apply</i> is checked.
<i>Apply</i>	Apply recent changes.

Pattern Generator Status panel shows the *Timing*, *Pattern* (Name), *CEF* (color format and subsampling and colorimetry), *BPC* (bits per color), *Status*, and *CRC* value, for each active stream.

Note: A full description of Minimum link configuration combinations for UCD standard video modes is available. [Please contact Unigraf](#) for details.

Pattern

Configuration of the video sent in the corresponding stream
(Controls vary between selected pattern type)

Predefined Timings

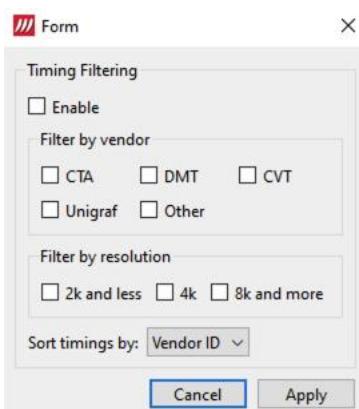
The list includes a set of common fixed video timings. Please find a list of the timings with their major details in [Appendix C](#) of this document. With *Manage Timings* function the user can add timings in the list and select which timings are shown in the selection.

Color Depth

Available color depths are: 6, 8, 10, 12 and 16 bpc. Color depth 6 bpc is only available when using RGB color format in DisplayPort or DisplayPort Alt Mode.

Video Pattern

The selection includes a set of predefined patterns and a possibility to load user defined custom patterns. Please find a description of the available predefined patterns in [Appendix D](#) of this document. By selecting **Disabled** you can have the links activated but no video data transferred.


Note: When MST mode is selected, full selection of test patterns is available only in stream 0

Filter

Filter timings by specific vendors and resolutions. Timings can be sorted by Vendor ID or width.

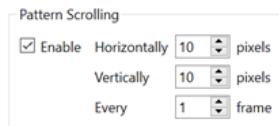
HDMI timings are sorted by VIC number by default.

Custom Image Patterns

BMP, PNG, and JPG files can be loaded from the PC to be used as custom images.

Please refer to *Link Pattern* in description of *DP and DP Alt Mode Reference Source Link tab* later in this manual for sending special DisplayPort binary patterns in the link instead of video.

Bitmap Scaling


When bitmap patterns are used, they can be used either in their original resolution, aligned to left top corner (=un-check *Scale*), or upscaled or downscaled to match the selected video resolution (=check *Scale*).

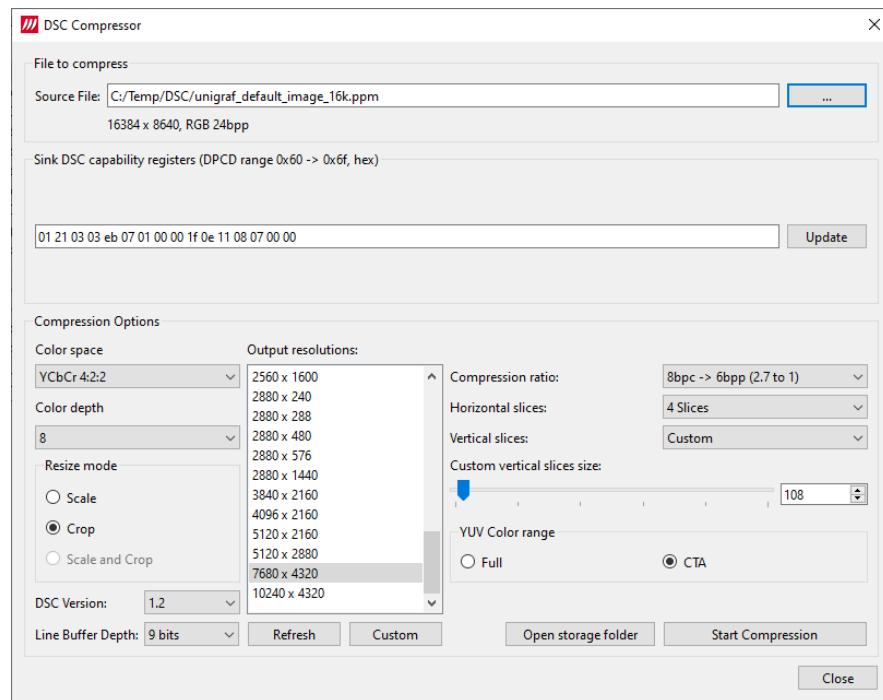
Pattern Options

Some of the predefined patterns include additional configuration parameters. The controls for the parameters appear below the pattern selection when the pattern in question has been selected. Please find a description of patterns options in [Appendix D](#) of this document.

Pattern Scrolling

When Pattern Scrolling is enabled, the pattern is moved horizontally and vertically between display scans. The function is available for all patterns except the following: Color Bars, Chessboard, Solid Color, Solid colors (white, red, green, blue), White V-Strips, Motion Pattern, DSC Pattern.

<i>Enable:</i>	Enable or disable pattern scrolling
<i>Horizontally X pixels:</i>	Horizontal step of the pattern movement in pixels (values in range -127...0...128, for YCbCr 4:2:2 even values). 0 = no movement, positive values = pattern moves to the right.
<i>Vertically Y pixels:</i>	Vertical step of the pattern movement in pixels (even values in range -127...0...128, for YCbCr 4:2:0 even values). 0 = no movement, positive values = pattern moves up.
<i>Every N frame:</i>	Delay of pattern movement in display frames (values in range 0... 255). 0 = no movement, 1 = move every frame, n = move every n:th frame.

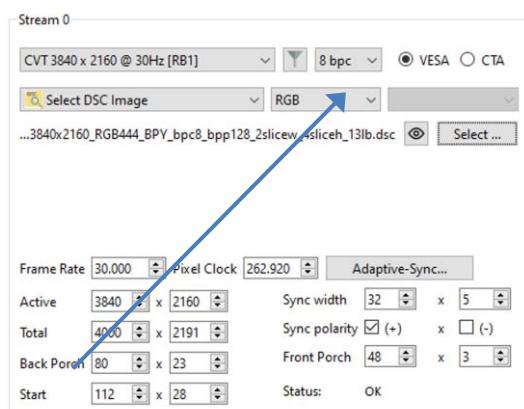


Note: Please click *Apply* to enable changes or check *Auto-Apply*.

Sourcing DSC Compressed Patterns

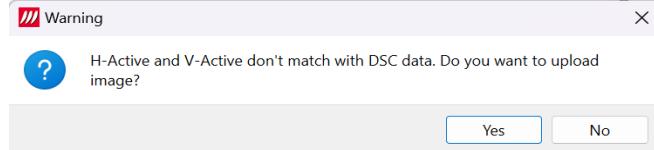
UCD Pattern Generator function can source DSC content originating from pre-created DSC compressed files. DSC compressed pattern files can be created with a separate tool called *DSC Compressor*. It can be launched from Tools > DSC Compressor.

Select the source bitmap file in Source File field. Define the Output Resolution, the color depth, compression ratio and number of horizontal and vertical slices in the frame.


<i>Source File:</i>	Source bitmap file to be compressed (JPG, PNG, PPM)
<i>Sink DSC capability registers:</i>	Click <i>Update</i> to read DPCD registers 0x60 to 0x6f from the connected Sink device
<i>Color Space:</i>	Color space of the output compressed file (RGB, YCbCr 4:4:4, 4:2:2, 4:2:0, Simple 4:2:2)
<i>Color depth:</i>	Color space of the output compressed file (8, 10, 12, 16)
<i>Output resolution:</i>	Resolution of the output compressed file
<i>Resize mode:</i>	The way the DSC image is created from the Source file
<i>Compression ratio:</i>	Used compression ratio
<i>Horizontal slices:</i>	Nr. of slices horizontally (1 to 24 Slices)
<i>Vertical slices:</i>	Vertical slices (1 to 24 Slices, Custom) Custom vertical slices size: minimum 1, recommended 108
<i>YUV Color range:</i>	Selection of color range between Full range (Full) (0 to 255 at 8 bpc) and Limited Range (CTA) (16 to 235 at 8 bpc)
<i>Refresh:</i>	Refresh the list after adding a custom resolution
<i>Custom:</i>	Create a custom output resolution
<i>DSC Version:</i>	DSC version used (1.1, 1.2)
<i>Line Buffer Depth:</i>	Line buffer bit depth used to generate the bitstream. (8 to 16 bits, default 9 bits)
<i>Open storage folder:</i>	Open DSC temp folder defined in Tools > Options
<i>Start Compression:</i>	Start the compression process

Result of the compression process is saved in the same folder as the source file. The start of the file name is the same as the source bitmap file; resolution and color format are added to the end of the file name.

Example:


```
unigraf_default_image_16k.ppm >>
unigraf_default_image_16k_1920x1080_YUV422_FULL_bpc8_bpp6.dsc
```

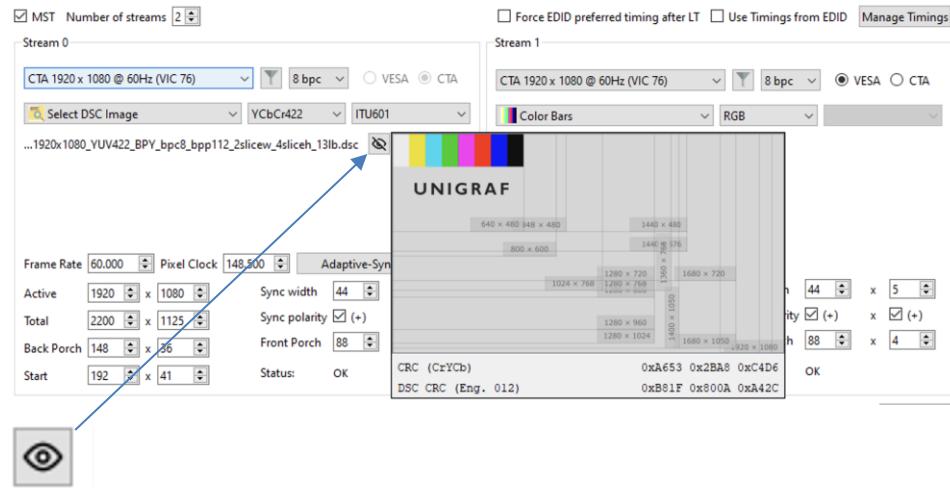
To use the created DSC file in Pattern Generator, select pattern: *Select DSC Image* and click *Select ...* to open file selection dialog.

When a DSC image is selected as the pattern, UCD Console will automatically enable DSC, provided that the connected Sink device declares support for DSC in its DPCD.

When *Select DSC Image* pattern is being transmitted and incompatible *Horizontal and Vertical Active* timings are set (Via *Apply* or *Apply All*), the user is presented with a dialog: *H-Active and V-Active don't match with DSC data. Do you want to upload image?*

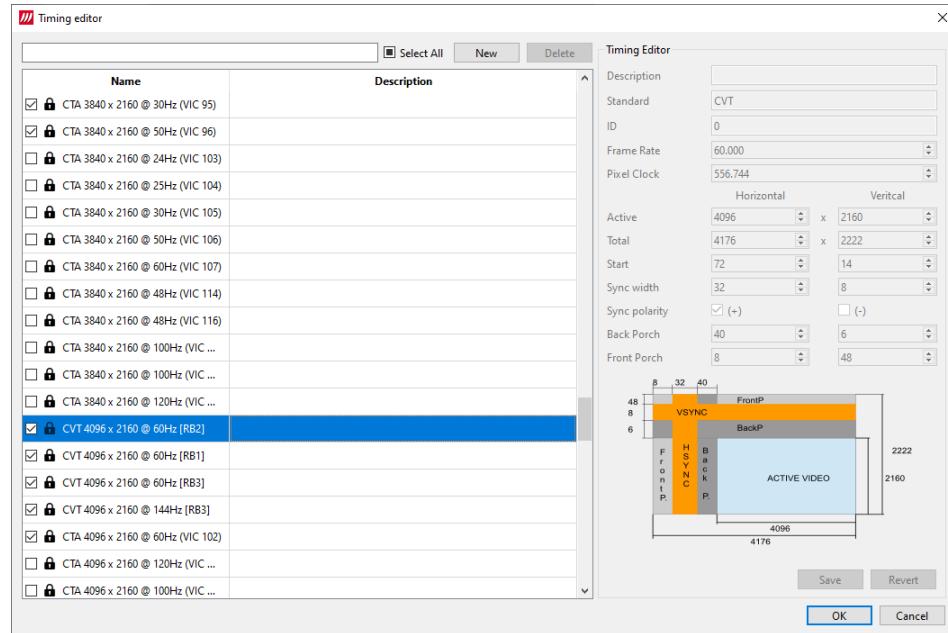
Above, “*Do you want to upload image?*” is misleading and will be changed to “*Continue to transmit image?*”.

If you select *No*, the new settings will not be applied.


If you select *Yes*, the Pattern will continue to be transmitted. DSC data is transferred in the active window. To transfer all DSC data without loss, active video should be large enough for DSC compressed data ($DSC_pic_height * DSC_pic_length / compression_ratio$). MSA H-active should also not be less than DSC pic_height.

MSA V-active parameters can be reduced without DSC corruption until active video area is no longer large enough to pass all DSC data.

MSA V-active and H-active can be increased until HW limitation (pixel clock limit) and link bandwidth are reached.


Preview DSC image

To preview an DSC image before it is applied to the pattern generator, select the eye icon. CRC and DSC CRC values will be indicated in the preview image.

Manage Timings

Custom timings can also be created and edited with pop-up *Timing Editor*. Launch the editor by clicking *Manage Timings*.

Customizing Timings List

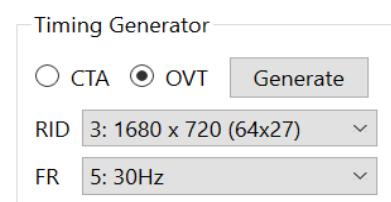
The list of timings that are shown on the pull-down menu in Pattern Generator and Link tabs can be limited by un-checking the checkbox in the left edge of *Name* column. The timings will remain in the list and can be brought back to the pull-down menu, when needed.

Editing Timings

Video timing Name and Description are shown in the list. Lock icon indicates that a timing is a fixed timing which cannot be edited or deleted. Custom timings are indicated with a head icon .

New: Create a new custom timing based on the selected fixed timing.

Delete: Delete the selected custom timing


Save: Save changes in the selected custom timing.

Revert: Undo all changes

The dialog parameters will be sanity checked and will warnings issued for illegal combinations.

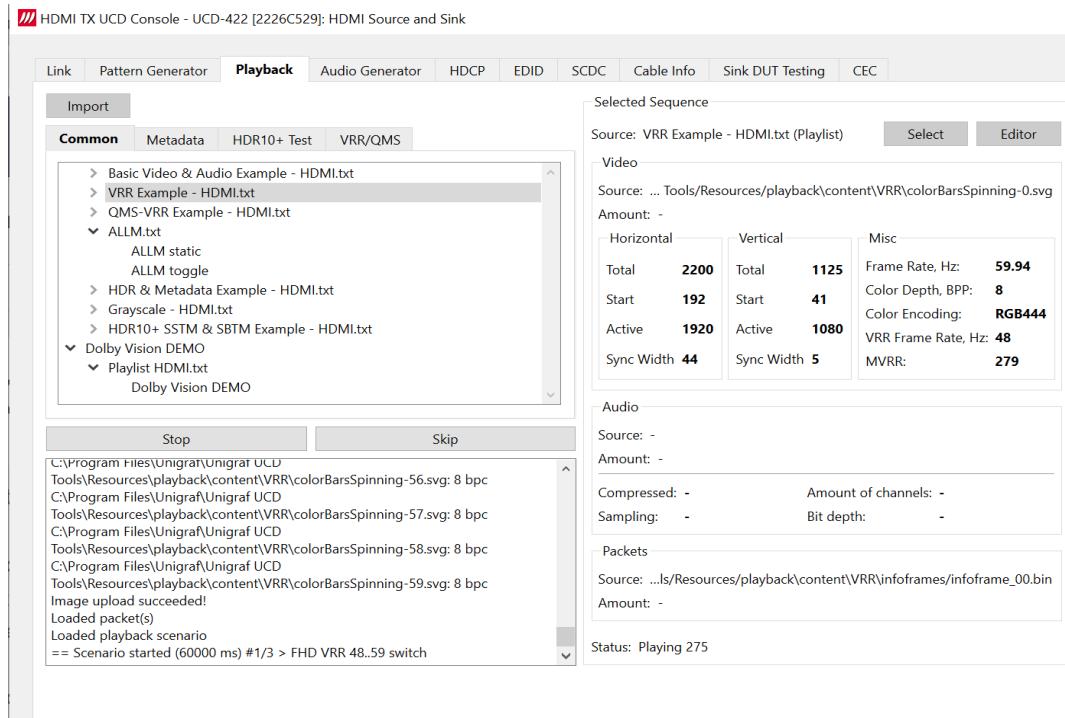
HDMI Timing Generator

HDMI Timings can be generated and applied via the *Timing Generator* group.

Timing Generator

CTA OVT

VIC


To do this select *CTA* or *OVT* timings radio button. Select desire *RID* and *FR* or *VIC* in combo boxes and then click the *Generate* button.

The generated values will be reflected in the Frame parameters. Click *Apply* to set timing.

Frame Rate	30.000Hz	Pixel Clock	44.400kHz			
Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical	
Active	<input type="text" value="1680"/>	<input type="text" value="720"/>	<input type="text" value="256"/>	<input type="text" value="6"/>	<input type="text" value="64"/>	<input type="text" value="14"/>
Total	<input type="text" value="2000"/>	<input type="text" value="740"/>	<input type="text" value="32"/>	<input type="text" value="8"/>	<input checked="" type="checkbox"/> Sync Polarity (+)	<input checked="" type="checkbox"/> Sync Polarity (+)
Blanking	320	20	Back Porch	<input type="text" value="32"/>	<input type="text" value="6"/>	<input type="button" value="Apply"/>

Playback Tab

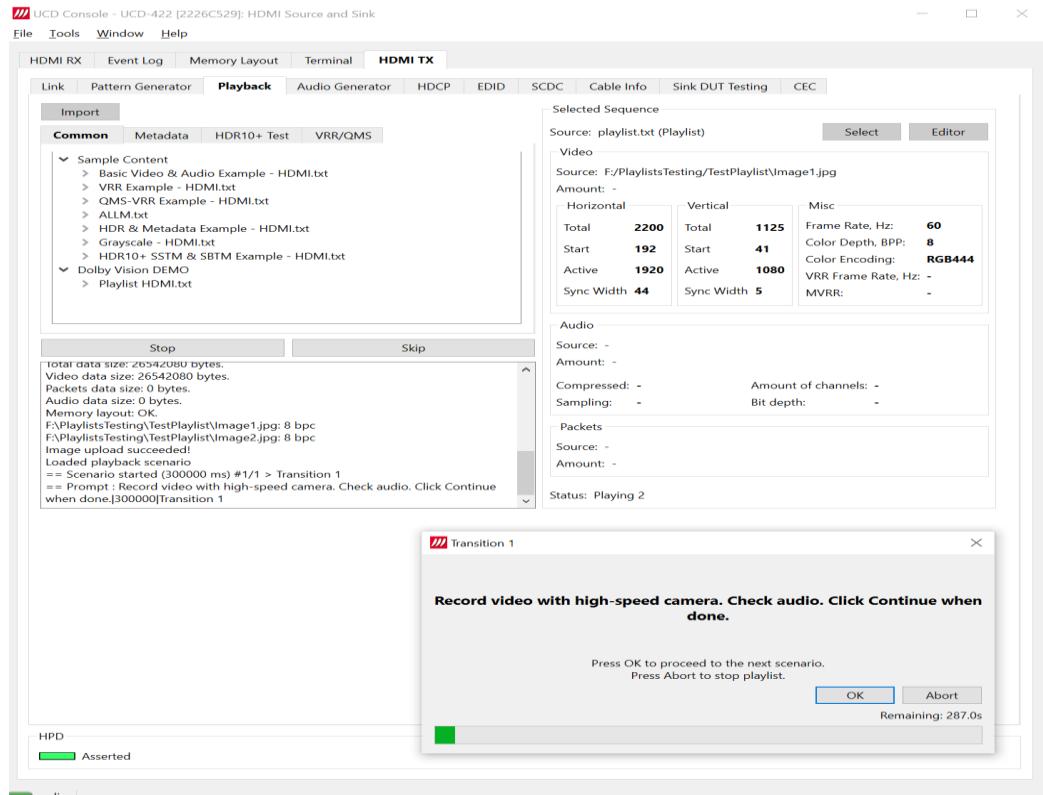
Playback allows for running predefined *Playlist* files. Playlist contains a set of *Scenarios* with definitions of the timing, video pattern, audio content and related metadata packets and their duration.

Term	Functionality
Playlist	<i>Playlists</i> (text files) specify the UCD devices and output protocol for transmission. It lists <i>scenarios</i> to be transmitted.
Scenario	<i>Scenarios</i> (text files) allow users to select video frames, metadata packets and audio to be transmitted and their order.
Advanced Playlists	Unigraf UCD devices can also be used as a compatibility test tools for dedicated standards such as Dolby Vision™ and HDR10+. Contact Unigraf for details.

Note: Note that Playlists and Scenarios are protocol dependent.

Common Tab

The *Import* button is for importing *.json files into the *common* tab treeview. Sample content on windows can be found at C:\Program Files\Unigraf\Unigraf UCD Tools\Resources\playback\basic_library.json. Be **warned** that once imported, items cannot at present be removed. Actually you can but it involves using *Windows Register Editor* to remove values from (uninstall will not help):


Computer\HKEY_CURRENT_USER\SOFTWARE\Unigraf\UCD Console\Playback

Computer\HKEY_CURRENT_USER\SOFTWARE\Unigraf\UCD Console\MetadataScenario

Sample playlists are included in UCD Console. Select a sequence (a scenario) from the playlists and press *Run* (or double click it) to play.

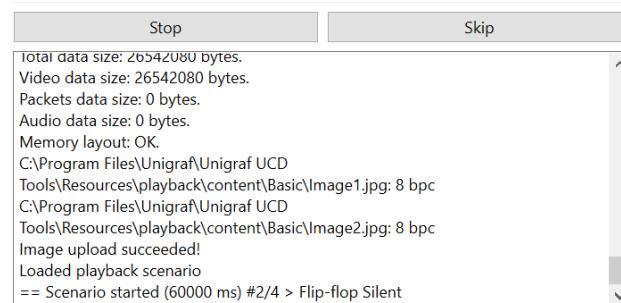
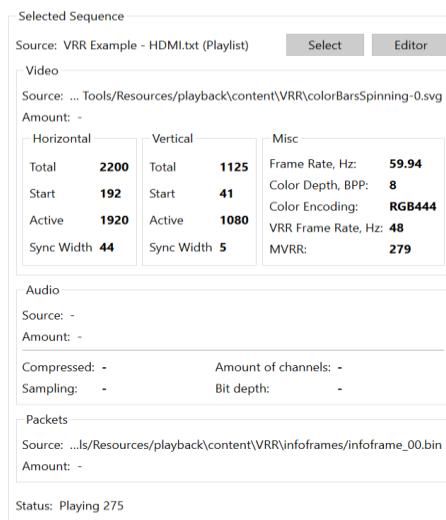

The *Run* button label changes to *Stop* as a *Scenarios* run. Press *Stop* to stop playing the scenario. Press *Skip* to skip to next scenario (available when there are multiple scenarios in a playlist) while playing. While the *scenario* is loading the *Run* button label changes to *Cancel* to allow cancelation.

Figure below shows a playlist being run that contains a *prompt* command which pops up a dialog.

Status Log

Scenario commands are listed in the *Status Log* as they are run.

Selected Sequence

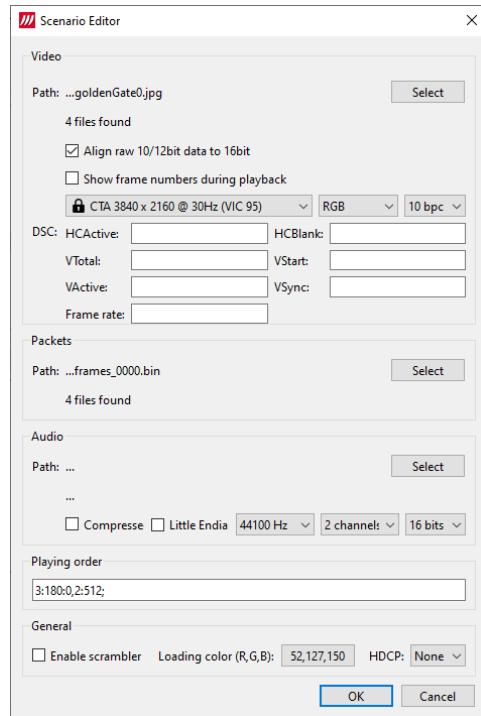

Running scenario video and audio details and their sources are shown in the *Selected Sequence* group panel.

Note that the triggered scenario or playlist to be run is the last selected: If an item was selected via the *treeview*, it is the triggered item to be run. If the *Select* button was used to select an item, it is the triggered item to be run (regardless of what is selected in the tree control).

Press the *Select* button to load a *playlist* or *scenario* to be run (selecting a sample from the *Sample Content* *treeview* will load them as the *playlist* or *scenario* to be run). Also it will be the *scenario* used as a template if the *Scenario Editor* is launched: default scenario values will be set if a playlist is selected.

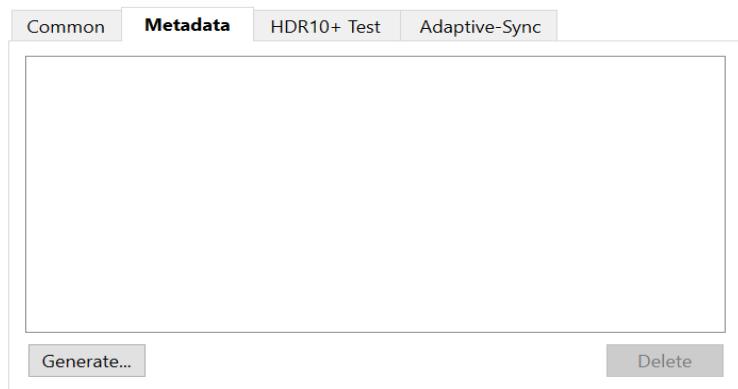
Press the *Editor* button to launch the *Scenario Editor* (see below).

The *Selected Sequence* parameters are the transmission stream parameters.

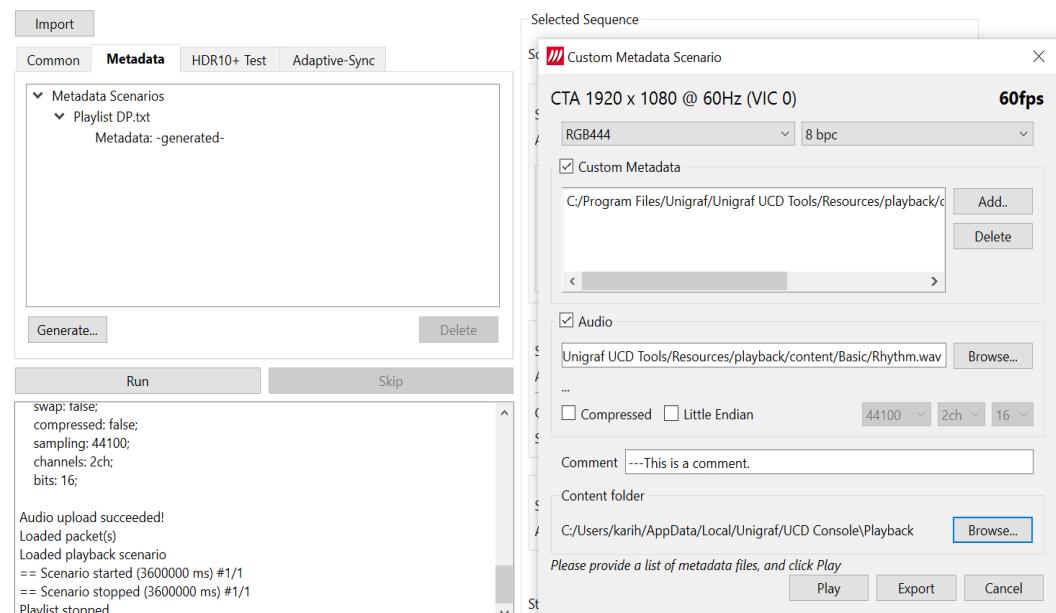

Scenario Editor

Press the *Select* button above to select the scenario desired to use as a template for creating a new scenario. Press the *Editor* button to launch the *Scenario Editor*. The the dialog paramters will be generated from the scenario file shown under the panel *Source* label (*Philips FHD.txt* as seen above).

Press the *Path* ...for setting the *Video*, *Packets* or *Audio* paths.


Press *OK* to save. Your are presented with a save dialog. You need to navigate to a directory you can save to. Run Console 2 with **administration rights** if you want to save to default locations on windows such as: C:\Program Files\Unigraf\Unigraf UCD Tools\Resources\playback\content.

Refer to [Appendix H: Playlists and Scenarios](#) later in this manual for details.



Metadata Tab

The *Metadata* tab is for creating scenarios with metadata.

Select the *Delete* button to delete a scenario or the *Generate* button to launch the *Custom Metadata Scenario* dialog (shown below).

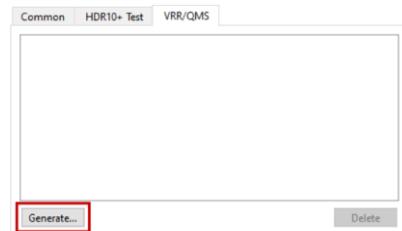
Current *Pattern Generator* timing details are shown at the top. You can change the color mode (RGB444, YUV444, YUV422, YUV420) and color depth (8 bpc, 10 bpc, 12 bpc, 16 bpc) via the dropdown combo boxes.

Select the *Add* or *Delete* buttons to add or remove metadata from the scenario.

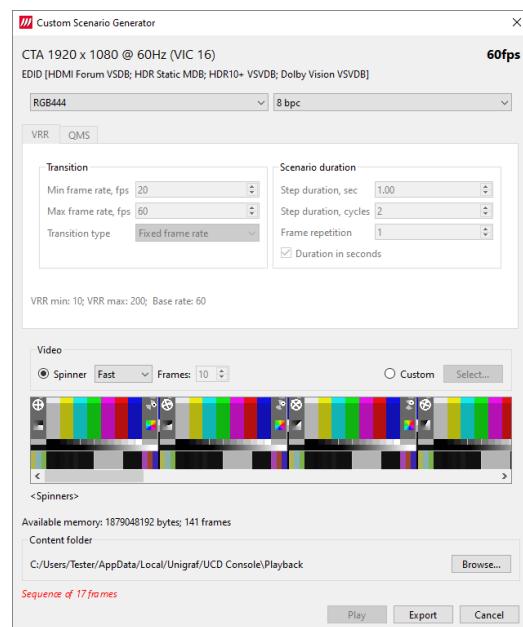
Check the *Audio* checkbox and then the *Browse...* button to add an audio file. Sampling, channels and bits can be selected via the combo boxes.

The *scenario Comment* can be added in line edit box after the three dashes (---).

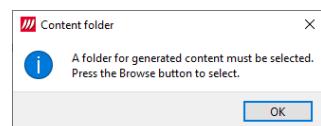
Use the *Content folder* *Browse...* button to select save location.

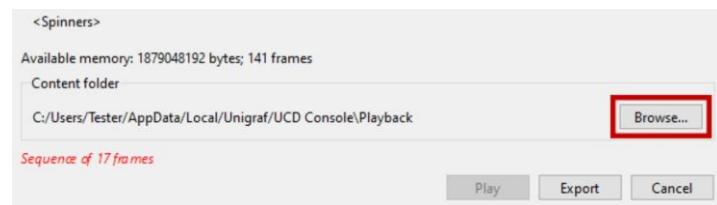

You can press *Play* to run the scenario, *Export* to save it or *Cancel* to cancel.

Export will create a folder something like *Metadata1920x1080@60-RGB444-8bpc* in the *Content folder*. In it you will find generated files *frame.svg* (displayed while running), the metadata files you selected and a *scenario.txt* file. You may edit and rename these files.

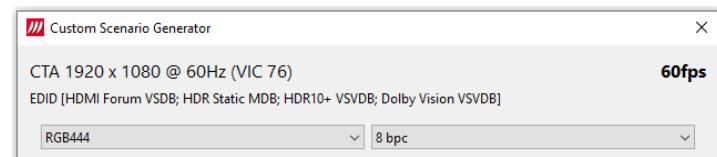

HDR10+ Test Tab

Please refer to HDR10+ CTS User Manual for detailed description of the tab.

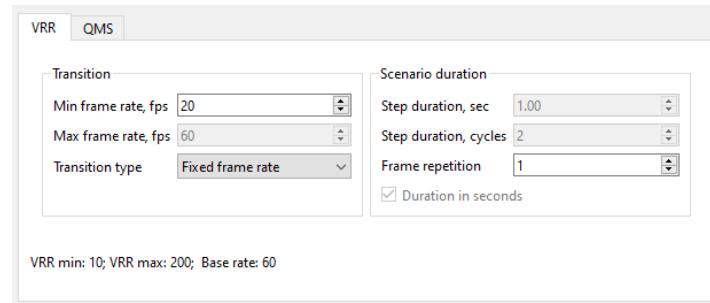

VRR/QMS tab


Click **Generate** to generate custom VRR and QMS scenarios. Custom Scenario Generator window will open.

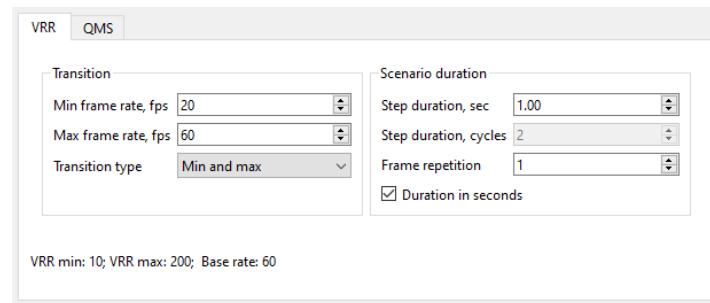
First you are asked to select the folder where the generated content will be stored.



Click **Browse...** to select the folder.

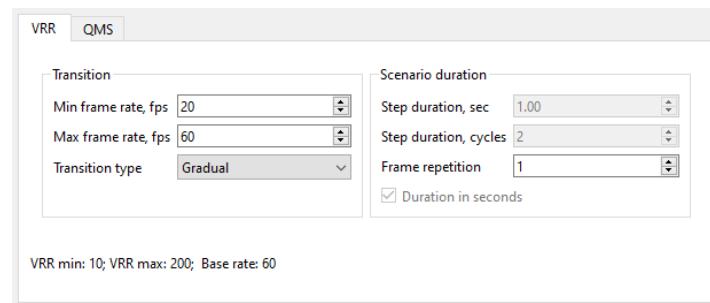

Timing details

The uppermost part of the window shows the timing details. Please, note that the timing is set on the pattern generator tab. You can change the color mode (RGB444, YUV444, YUV422, YUV420) and color depth (8 bpc, 10 bpc, 12 bpc, 16 bpc).

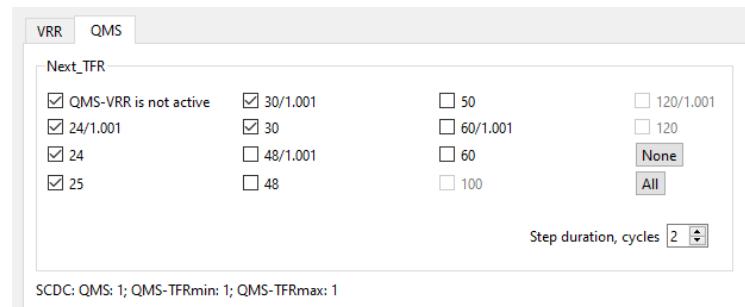


VRR settings

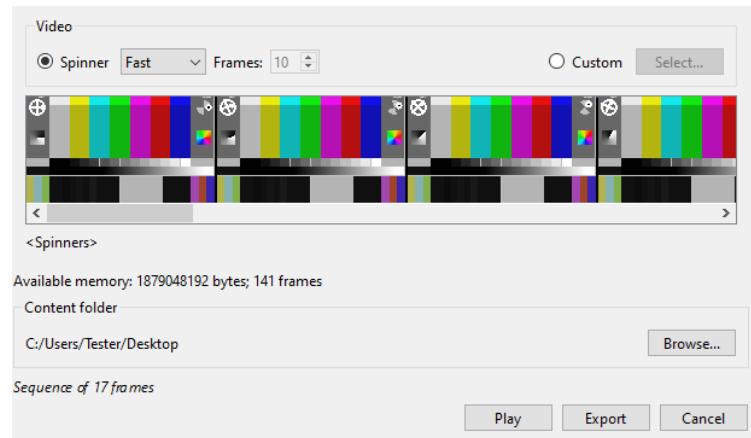
In the VRR tab you can set the transition and scenario duration parameters. Different transition types are Fixed frame rate, Min and max and Gradual. When *fixed frame rate* is selected, the scenario is played at the minimum frame rate set in the first field. Please, note that when the fixed frame rate is selected, you can only select the number of times the frame is repeated.



When *min and max* is selected, the output scenario will alter the framerate between the specified values. You can also set the duration for step in seconds and select how many times frames are repeated.


When *gradual* is selected, the frame rate is changed with each frame. For example, when min frame rate is set at 20 and max is set at 60 and the scenario has 40 frames, frame rate would be incremented by 1 with each frame.

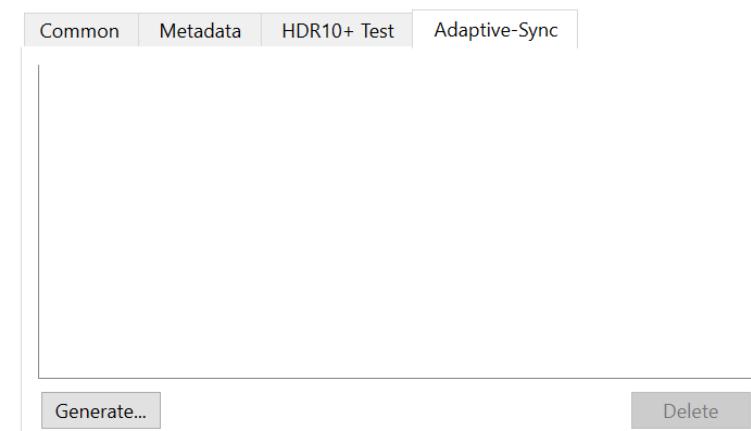
Info at the bottom of the segment shows the minimum and maximum values for VRR framerate defined in EDID, and the base frame rate set in the pattern generator.



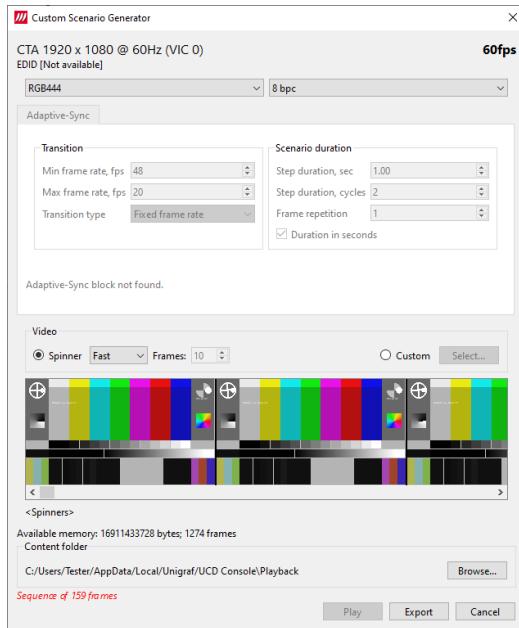
QMS settings

In the QMS settings dialogue you find all the frame rates included in the QMS specification. Select which frame rates you want to include in your scenario. Also select the step duration in cycles. In the lower left corner details of the scenario as shown.

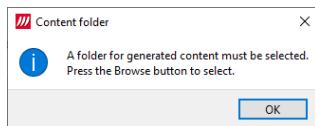
Video

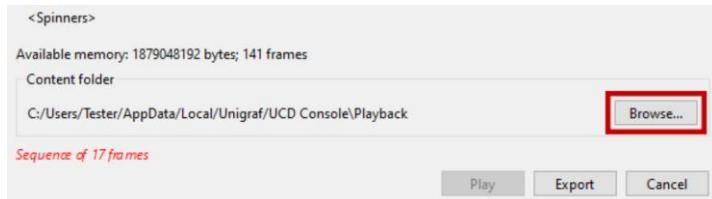

The section at the bottom shows details of the output video. The default pattern is a spinner. You can select the speed of the spinner video from the predefined options in the drop-down menu or you can set a number of frames it takes for the spinner to rotate a full circle. You can also select a custom video. The supported file types are .jpg, .png, .gif, .bmp, .tiff, .ppm and .tif

Available memory is shown in bytes and frames. Below, the folder selected for the sequence is shown. You can change the folder by clickin Browse... Lastly, the duration of the sequence is shown in frames.

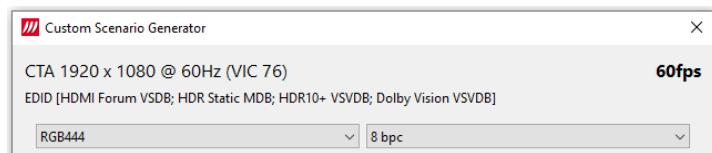

You can export the scenario by clicking *Export*. When exporting, you are asked to select a location for the export. The content folder will be automatically created in the chosen location. The folder inlcudes the image files, packets and scenario parameters.

You can play the scenario by clicking *Play*. When the scenario is ready for playing, the scenario generator window will close. You can now inspect the progress in the log in the playback tab as shown below.


Adaptive-Sync tab

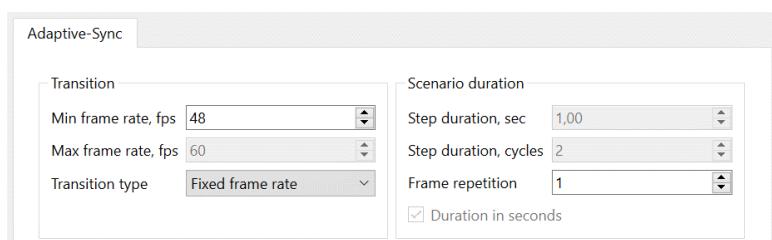

Click *Generate* to generate custom Adaptive-Sync scenarios. Custom Scenario Generator window will open.

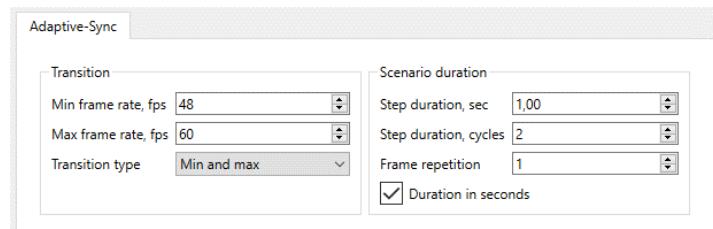
First you are asked to select the folder where the generated content will be stored.



Click *Browse...* to select the folder.

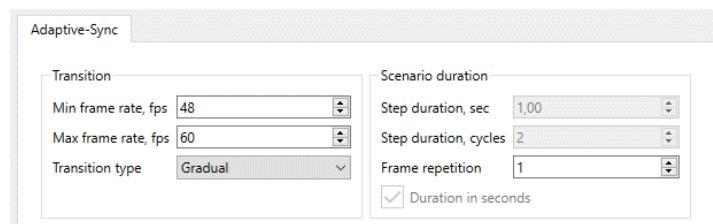
Timing details


The uppermost part of the window shows the timing details. Please, note that the timing is set on the pattern generator tab. You can change the color mode (RGB444, YUV444, YUV422, YUV420) and color depth (8 bpc, 10 bpc, 12 bpc, 16 bpc).

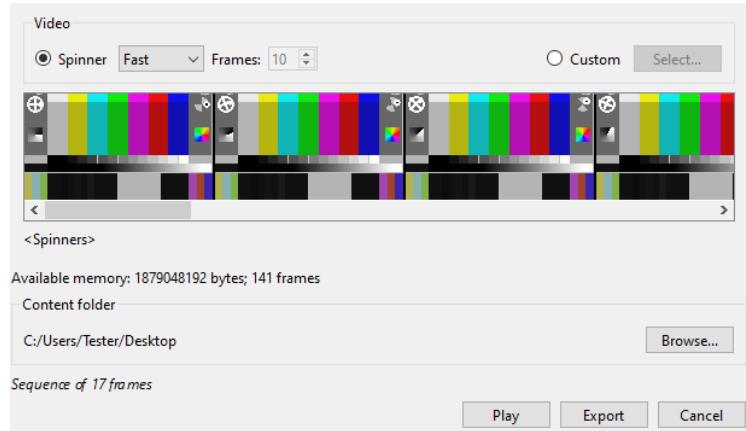

Adaptive-Sync settings

In the Adaptive-Sync section you can set the transition and scenario duration parameters. Different transition types are Fixed frame rate, Min and max and Gradual.

When *fixed frame rate* is selected, the scenario is played at the minimum frame rate set in the first field. In scenario duration, select how many times frame is repeated.



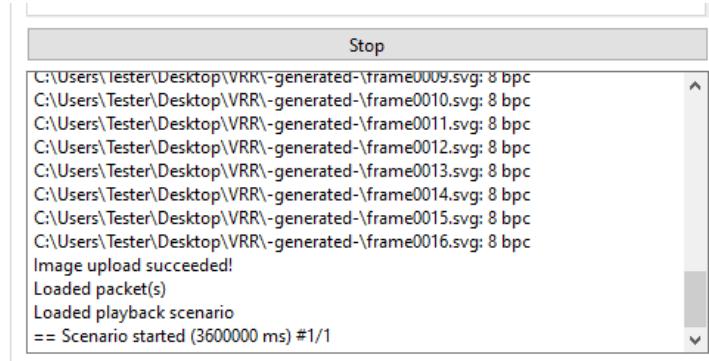
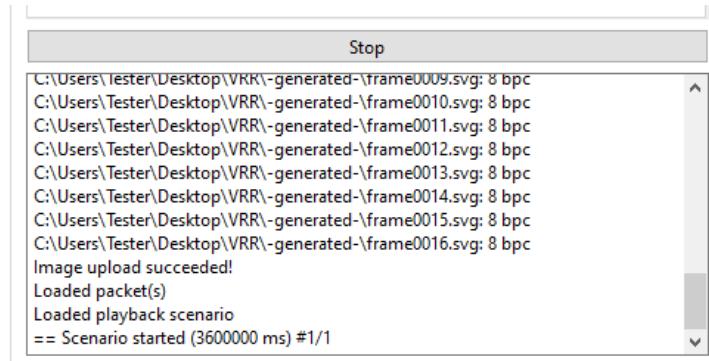
When *min and max* is selected, the output scenario will alter the framerate between the two values set in the drop down menus. You can also set the duration for step in seconds and select how many times frames are repeated.



When *gradual* is selected, the frame rate is changed with each frame. For example, when min frame rate is set at 20 and max is set at 60 and the scenario has 40 frames, frame rate would be incremented by 1 with each frame.

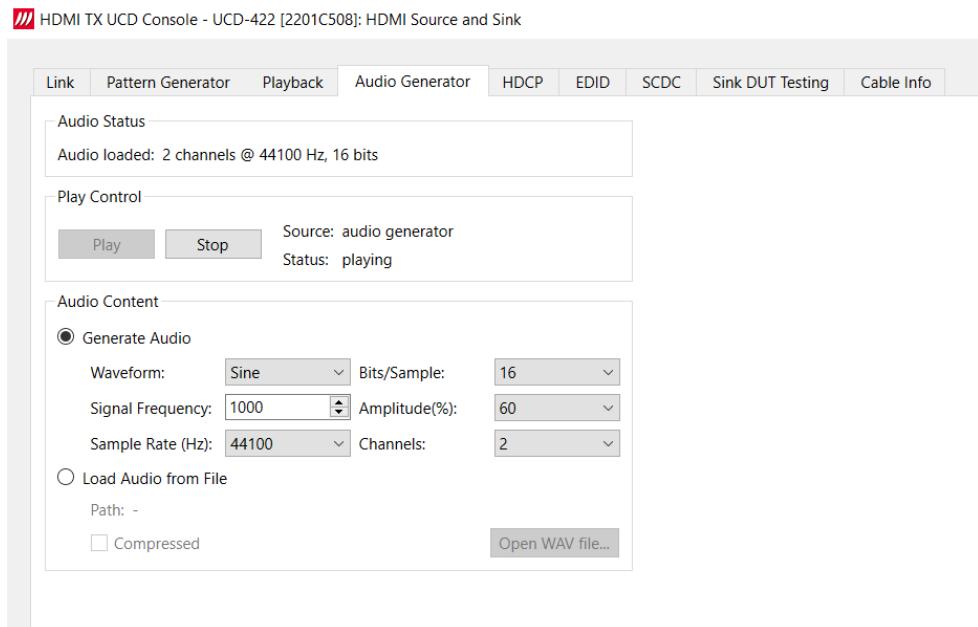
Info at the bottom of the segment shows the minimum and maximum values for VRR framerate defined in EDID, and the base frame rate set in the pattern generator.

Video

The section at the bottom shows details of the output video. The default pattern is a spinner. You can select the speed of the spinner video from the predefined options in the drop-down menu or you can set a number of frames it takes for the spinner to rotate a full circle. You can also select a custom video. The supported file types are .jpg, .png, .gif, .bmp, .tiff, .ppm and .tif.

Available memory is shown in bytes and frames. Below, the folder selected for the sequence is shown. You can change the folder by clickin *Browse...* Lastly, the duration of the sequence is shown in frames.


You can export the scenario by clickin *Export*. When exporting, you are asked to select a location for the export. The content folder will be automatically created in the chosen location. The folder inlcudes the image files, packets and scenario parameters.

You can play the scenario by clickin *Play*. When the scenario starts playing, the scenario generator window will close. You can now inspect the progress in the log in the palyback tab as shown below.

Audio Generator Tab

Audio generator allows the user to play LPCM audio generated internally or from files in WAV format. Audio is played to all active ports.

To load internally generated audio, select *Generate Audio*, and adjust the controls to the desired audio format.

To load an audio file from your PC, select *Load Audio from File*, click the *Open WAV file...* button, browse and select the file and Open.

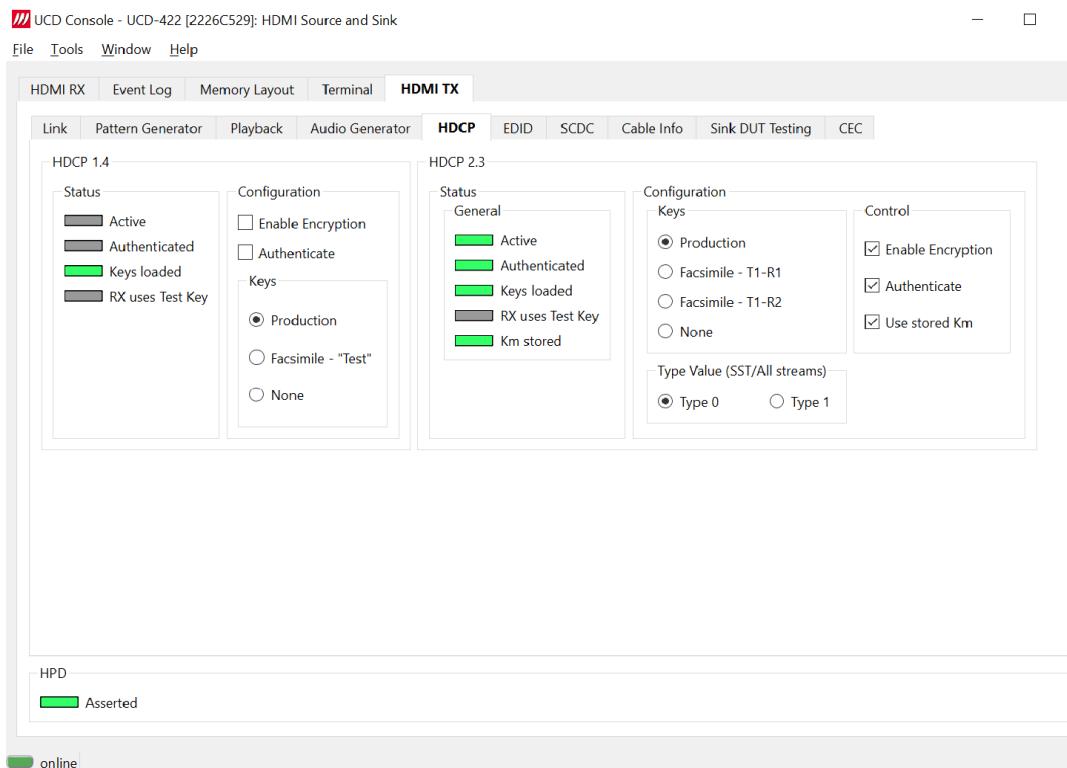
The *Compressed* checkbox indicates that the audio loaded from the selected file is compressed.

To play the selected audio content, click the *Play*.

The content will be transmitted until the *Stop* button is clicked.

Audio Status displays current audio content status.

Audio Content


Sent audio can be generated internally or used a WAV file loaded from the PC.

In case of a WAV audio file, the parameters stored in the file will be used. When generating audio internally, the user sets the details of the LPCM Audio signal.

<i>Waveform</i>	Selection of audio waveform: Sine, Sawtooth, Square, or Incremental
<i>Signal Frequency</i>	Setting audio signal frequency in Hz.
<i>Sample Rate (Hz)</i>	Selection of audio sampling rate: 32000, 44100 (default), 48000, 88200, 96000, 176400, 192000.
<i>Bits/Sample</i>	Selection of sample bit depth: 16, 20, 24.
<i>Amplitude(%)</i>	Selection of audio amplitude: 10%, 20%, ..., 90%, 100%.
<i>Channels</i>	Audio channels available: 1, 2, ..., 7, 8. Channels transmit LPCM (uncompressed) Audio.

HDCP Tab

HDCP tab is the dialog for monitoring the HDCP (for *High-Bandwidth Digital Content Protection*) status and controlling the HDCP capabilities of the UCD device.

Status General

The status fields indicate the HDCP status of the UCD device.

<i>Active:</i>	The stream between UCD and the downstream sink has been encrypted.
<i>Authenticated:</i>	HDCP handshake between the UCD and the sink unit has been completed successfully.
<i>Keys loaded:</i>	HDCP keys are loaded to the UCD unit.
<i>Km is stored:</i>	Master Key (Km) is stored.
<i>SST Mode Type</i>	Type when in SST mode.

Status By stream

Stream status (DP) shows HDCP status on each stream.

Configuration Control

<i>Enable encryption:</i>	Check to enable the encryption of the stream between UCD and the downstream sink.
<i>Authenticate:</i>	Perform the HDCP initiation handshake between the UCD and the sink unit.
<i>Use stored Km:</i>	Use stored Master key (Km).

Configuration type

Select to configure HDCP (DP) or All streams at once or By stream.

By stream

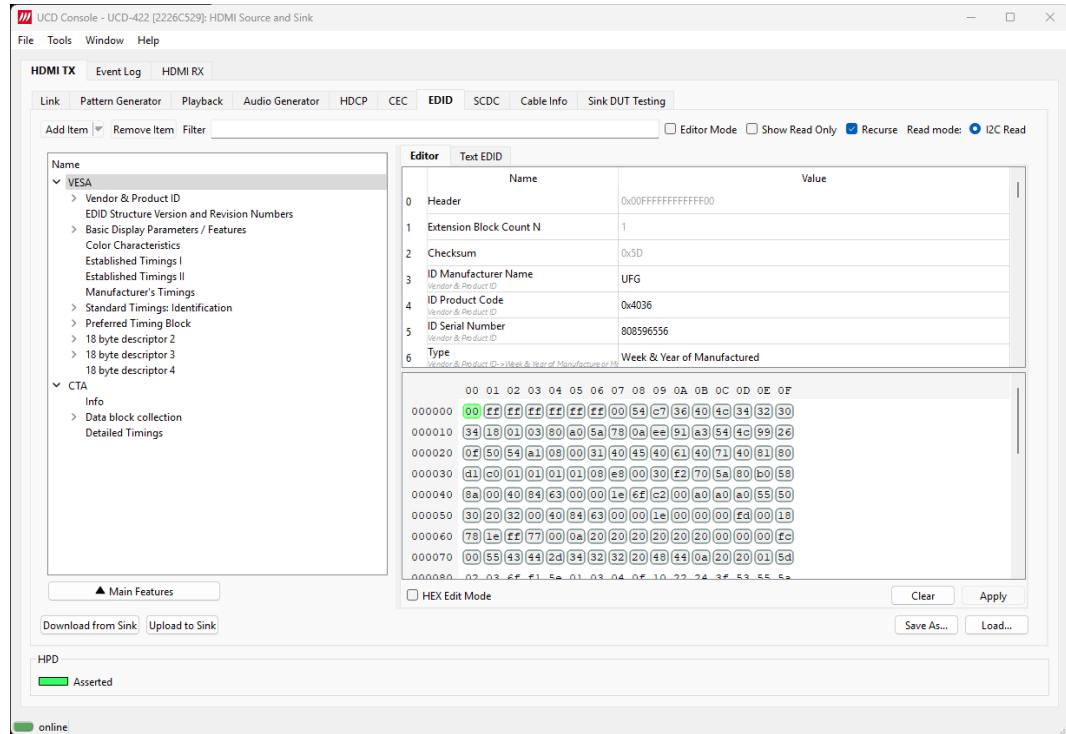
Select and configure streams (DP).

Type Value

Select Type 0 or Type 1. Type 1 ensures that content encryption is done with HDCP version 2.2 or higher.

Configuration Keys

Select *Production* or *Facsimile* HDCP keys. To remove the keys, select *None*.


EDID Tab

EDID Tab provides tools for accessing the EDID data of the connected sink device. There are three basic functions:

- Load and save the data files in the host PC.
- Edit the data contents either in Editor Mode or in Hex Edit Mode.
- Read and write data to the connected sink. Up to 4 virtual channels can be accessed.

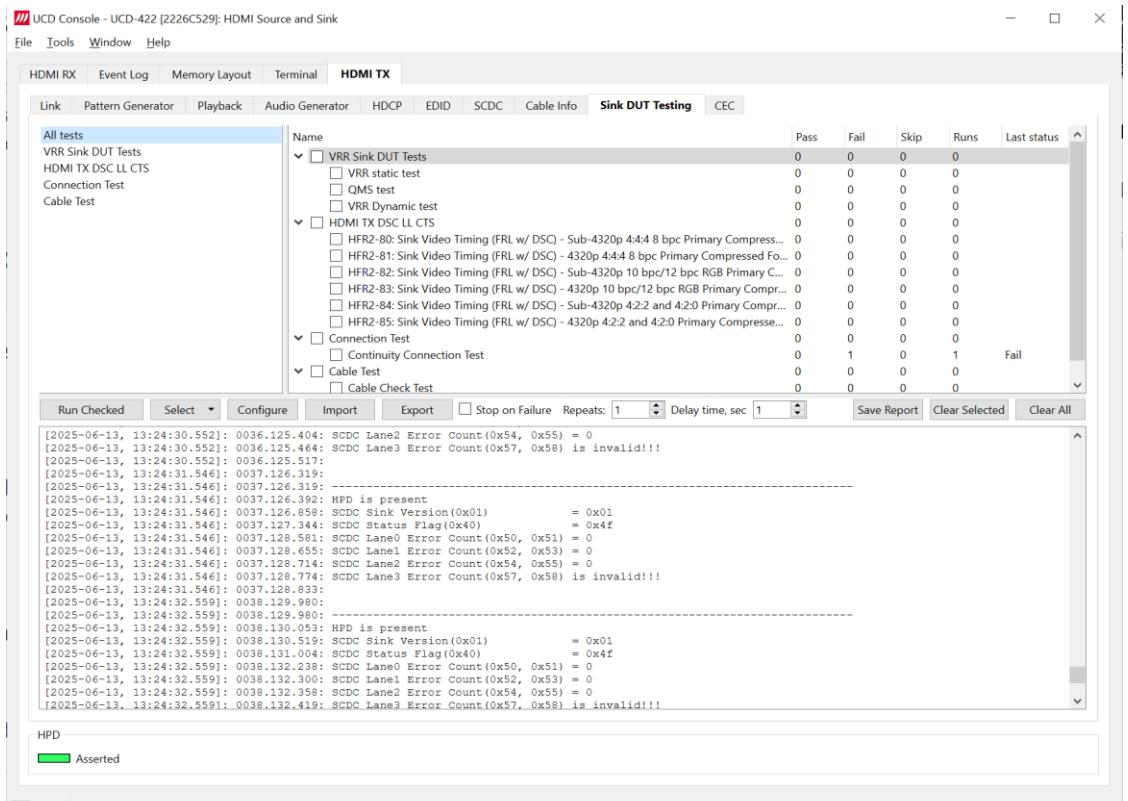
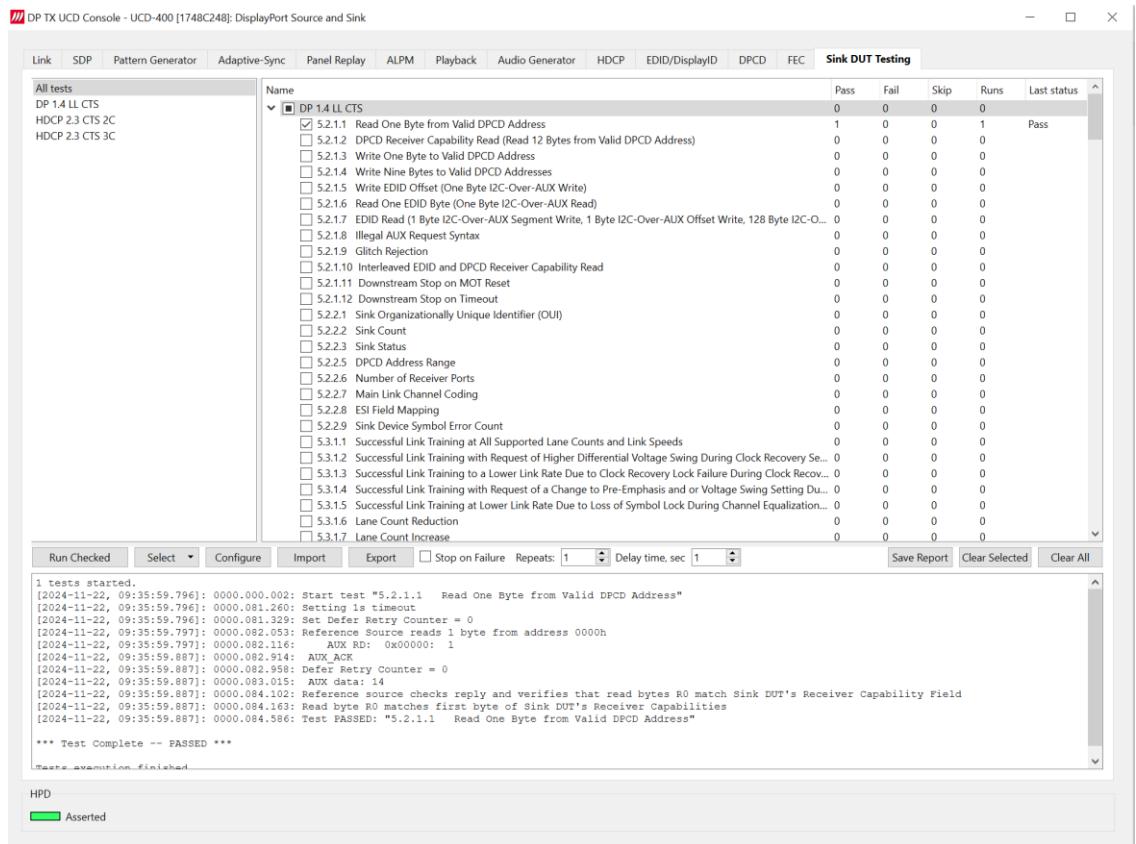
EDID Files

With *Load...* and *Save As...* a file can be read into the editor or written to a file from the PC.

The contents of the device EDID file are not modified, or integrity checked during load and save operations.

Note: Four blocks (512 bytes) of EDID code are read. If the device does not support all four blocks, the non-supported data values are set to zero.

Text EDID



In the Editor Panes (upper right pane), the *Text EDID* tabs allow viewing data in tree form.

EDID/DisplayID Editor

Please see the description of the EDID editor in Chapter [EDID/DisplayID Editor](#) later in this document.

Sink DUT Testing Tab

Refer to *Appendix E* for descriptions of the tests available. The tests are presented in a split view, the left being test categories and the right being the tests within.

Select the tests for execution by checking checkboxes or by clicking the test name. *All tests* item on the left hand side is really just for viewing all tests available. Select the desired test category (ex. *DP 1.4 LL CTS*) when running tests.

<i>Run/Run Checked:</i>	Select to start selected/checked tests. Once tests are running the <i>Run Checked</i> button is relabeled <i>Abort</i> to stop the test sequence if desired.
<i>Select:</i>	Includes three sets of options: <i>Select All</i> , <i>Clear All</i> , <i>Invert All</i> for changing the tests current selections; <i>Save</i> (checked items), <i>Load</i> (and check relevant items), <i>Remove</i> (named tests list) for handling named templates; <i>Import</i> (check all items contained in file) and <i>Export</i> (save all checked items to file) for loading and saving file-based templates. Do not confuse <i>Import</i> and <i>Export</i> with those below: These are for setting and saving tests to run.
<i>Configure:</i>	Opens a test parameters dialog for the selected test set. Make sure a test category other than <i>All tests</i> is selected. Refer to <i>Test Parameters</i> below for details.
<i>Import:</i>	Load saved test parameter files (*.td or *.json) into UCD Console. Select <i>Configure</i> to see current parameters. Loading *.td files to UCD Console is currently unreliable.
<i>Export:</i>	Save test parameters for later use or for use in test automation. For saving parameters for later use in UCD Console, either format can be used. For saving parameters for TSI scripting, please use *.td files. For use with Python applications, use *.json files.
<i>Stop on Failure:</i>	Stops execution of tests if one fails.
<i>Repeats:</i>	Number of times to repeat the selected test sequence.
<i>Delay time:</i>	Delay in seconds between individual tests.

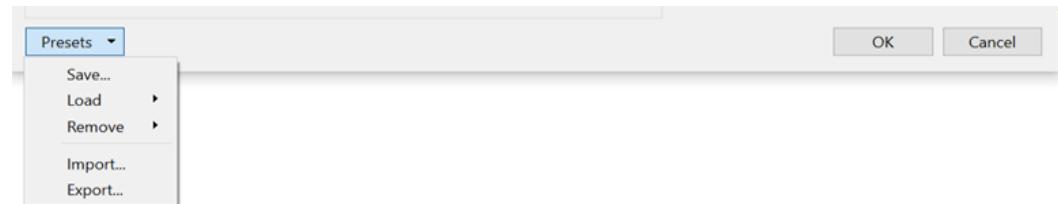
On completion of each test the result of the test is displayed in the table columns on the right. For each test the table lists the number *Pass*, *Fail*, *Skips*, *Runs* and *Last Status* (status of last run).

<i>Save Report:</i>	Select to generate a HTML report file. This will also open a tab in the default browser and display the results.
<i>Clear Selected</i>	Clear the test results of the <i>selected</i> (not checked) tests results. A subsequently saved report will not include these test results.
<i>Clear All:</i>	Clear the test log view and the outstanding results.

Test Parameters

Each test set has its dedicated set of test parameters. To open a dialog for defining the parameters click *Configure*.

Description of parameters for each test set can be found within the description of tests in Appendix E of this document.


Saving Test Parameters

Test parameters can be saved in various ways.

- Export parameters in *Sink DUT Testing* tab to a *.td file for later use in UCD Console, to run TSI scripts, or to share test parameters with someone. Presently importing *.td files into UCD Console is unreliable.
- Export parameters in *Sink DUT Testing* tab to a *.json file for later use in UCD Console, to run Python scripts, or to load test parameters into UCD Console.
- Save parameters in *Configure* dialog as Presets later to be used in UCD Console. See description below.

Presets

All *Configure* dialogs selected parameters can be saved and loaded via *Presets* dropdown menu. Select *Save* or *Load* for named internal configuration parameter sets. Select *Remove* to delete a named internal set. Select *Import* and *Export* for loading and saving parameter sets from and to external files. Note that *importing* and *Exporting* *.json files here have a different format than importing those described above.

6. HDMI LINK TIMELINE VIEWER

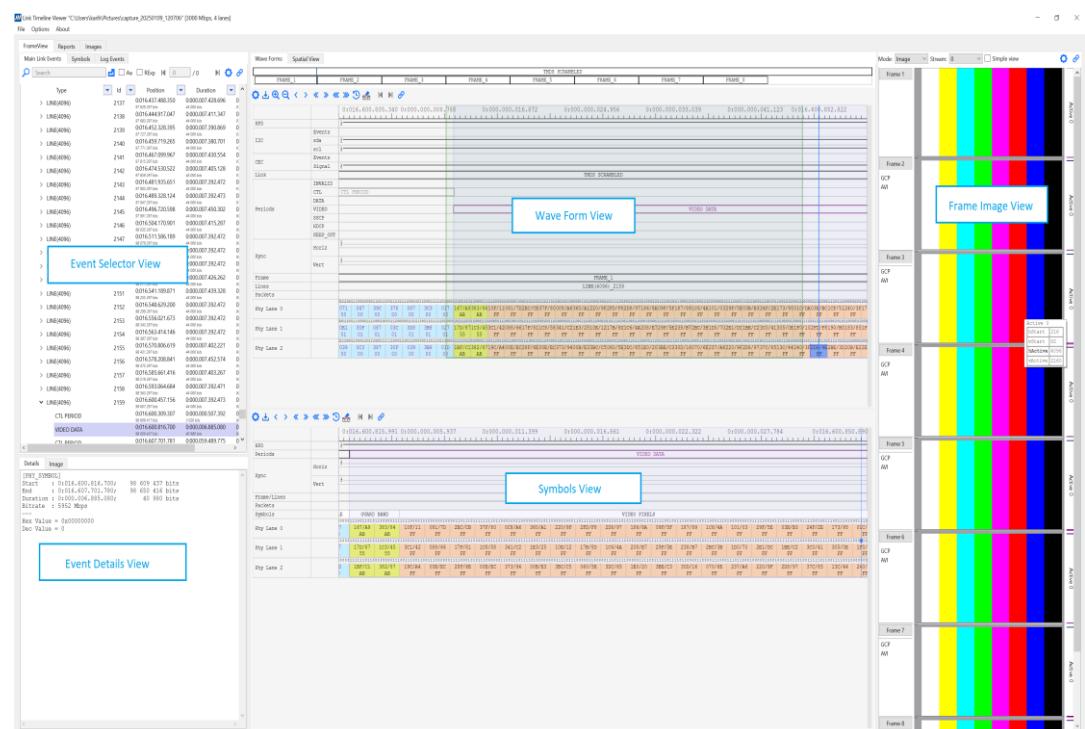
Role:

Product:

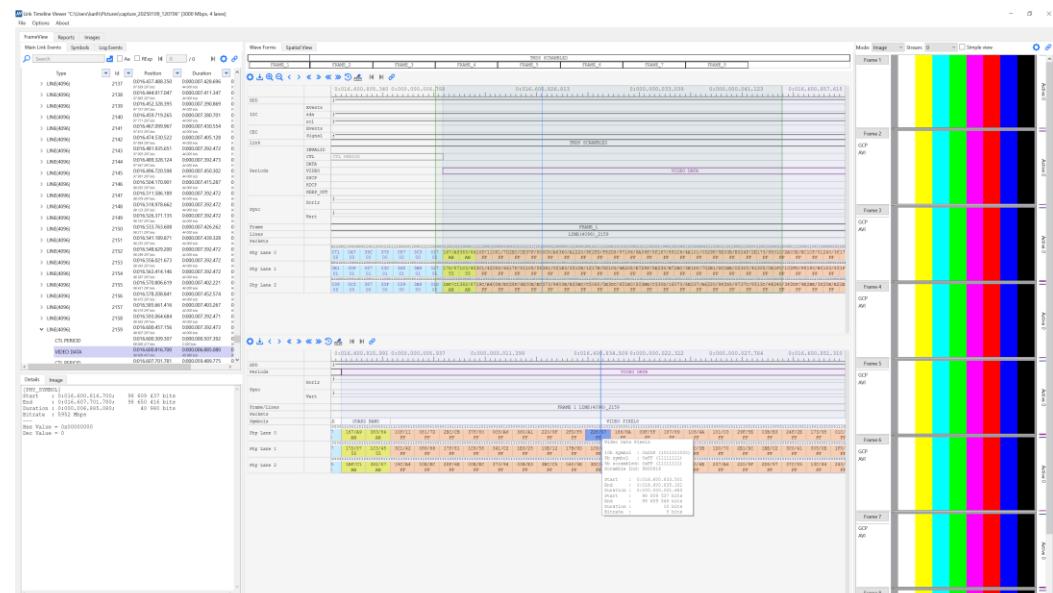
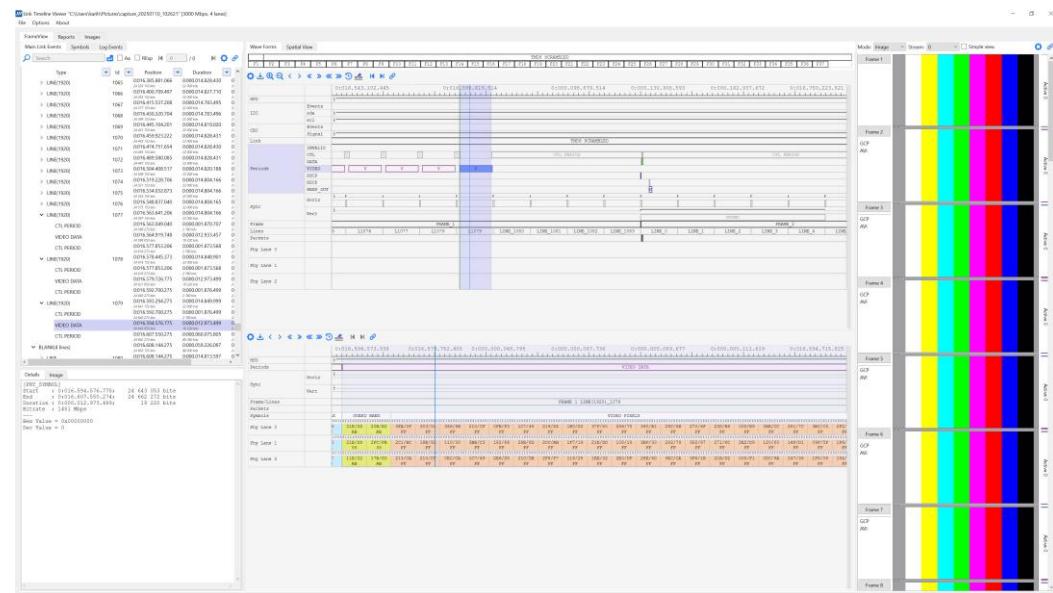
HDMI Reference Sink (HDMI RX)

UCD-422

HDMI Link Timeline Viewer is a tool for evaluating the content and timing of data captured via *HDMI Link Analyzer* functionality of UCD Console.

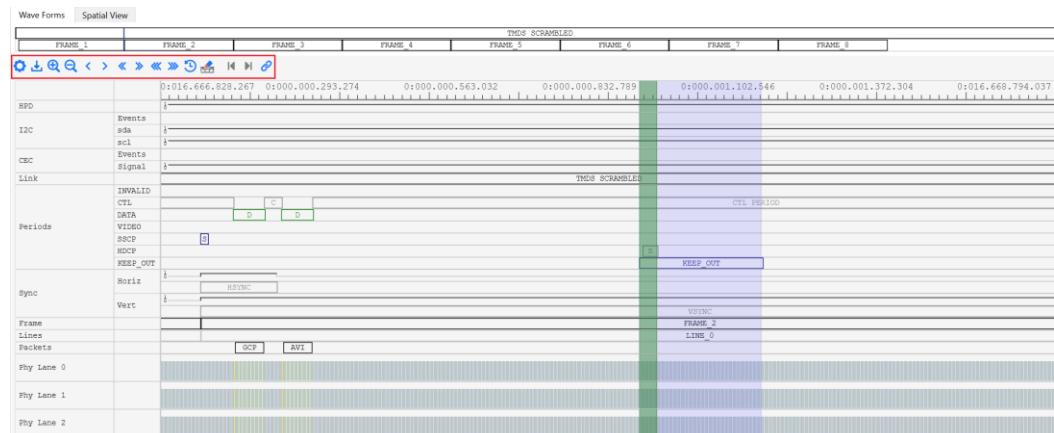

HDMI Link Timeline Viewer has three tabs (for three modes):

FrameView tab is the **primary** tab for analyzing captured events on the timeline.



Reports tab can be used to summarize events (AUX at present).

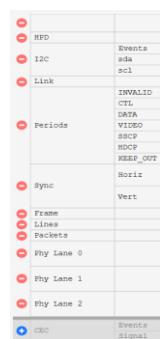
Images tab lets the user view captured video frame images.

The *FrameView* tab and its views are shown below.

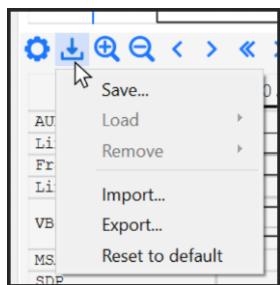


Wave Form View zoomed out and zoomed in views are shown below. Event periods are shown under the timeline (at the top) in their proper row as *period rectangles* with text descriptions (or abbreviations or no text, space permitting). Double-clicking a *period rectangle* will highlight the timeline portion of the rectangle and the row header(s) as shown below. To zoom the Wave Form View, position the cursor and use the mouse wheel to zoom in or out with respect to the cursor location. Drag to scroll the Wave Form View and the Symbols View horizontally.

Wave Form and Symbols View Settings


Shown below are the *WaveForms View* and *Symbols Views* settings widgets.

Gear Icon


Select the *Gear* icon to select events to be displayed (+) or hidden (-). When *Gear* icon is selected, you can drag a row to reorder rows.

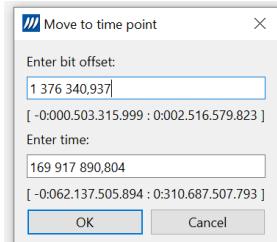
Save Icon

Select the *Save* icon to *Save*, *Load* or *Remove* named internal settings sets. You can also *Import* or *Export* named *.json files containing settings or *Reset to default*.

Zooming

Select *Zoom* + or – icons to zoom in and out or use the mouse wheel. The zooming in/out option applies to *Wave Form View* only.

Scrolling


Use the arrow keys to navigate the timeline. One arrow moves the timeline one page, two arrows 10 pages and three 100 pages.

You can also scroll by dragging (click and hold while dragging).

Clock icon

Move to a time point. Enter values and press OK.

Eraser

Removes all measurements on the timeline.

Move to Previous or Next Frame

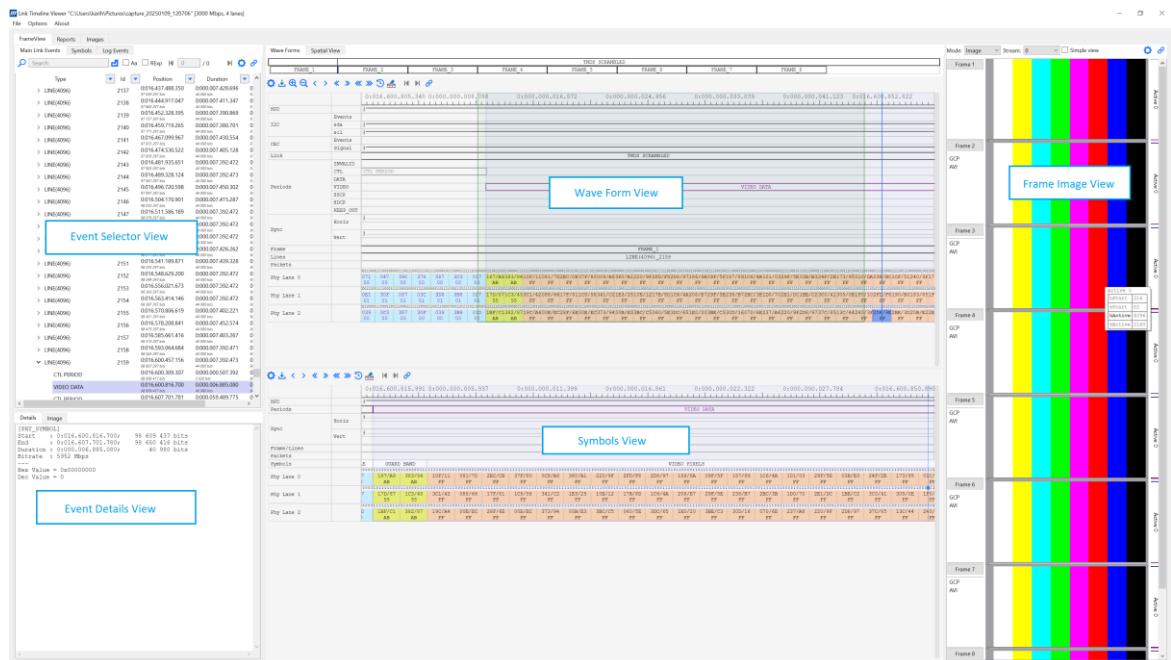
Move back or forward to the same relative location in the previous or next frame.

Sync Data

Not synchronized.

Synchronized.

FrameView Tab


Frame View tab has three tabs: *Main Link Events*, *Symbols*, and *Log Events*.

The *Main Link Events* tab is the **primary** tab for analysis and is presented first.

Main Link Events Tab

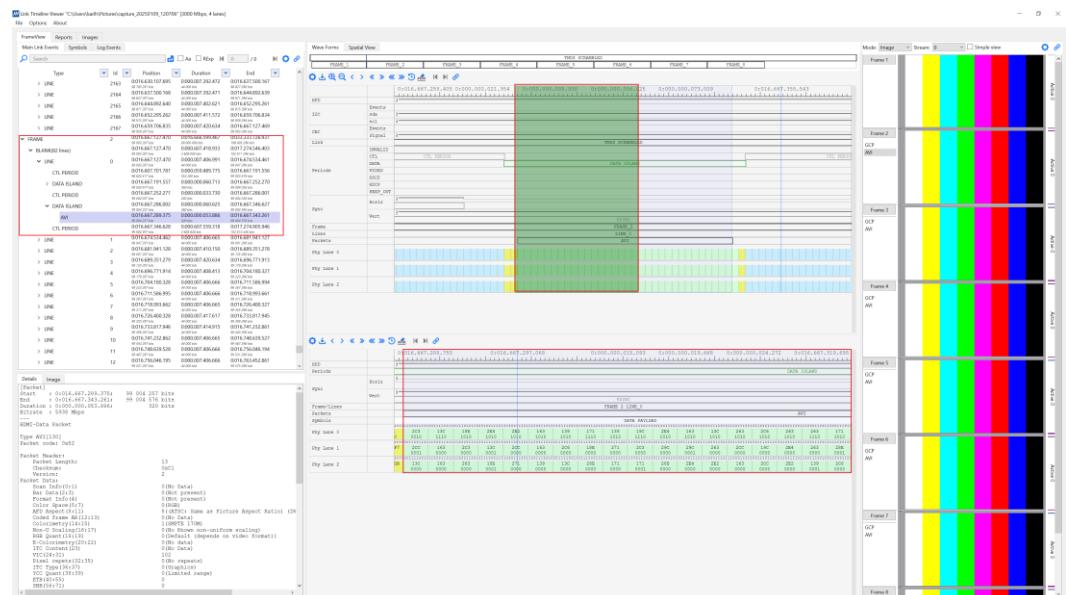
Main Link Events tab consists of five panels: Event Selector View, Event Details View, Wave Form View, Symbols View and Frame Image View.

Each of these views are synchronized and actions in one will be reflected in others.

Event Selector View

Event Selector View events are presented as a folding list of *FRAMES*. Each *FRAME* contains a set of *BLANK LINEs* followed by a set of *ACTIVE LINEs* and finally by another short set of *BLANK LINEs*. *BLANK LINEs* contain items such as *CTR* periods and *DATA ISLAND* periods. *DATA ISLANDs* contain *HDMI data packets* such as *GCP* and *AVI* packets. *ACTIVE LINEs* contain *CTRL* and *VIDEO DATA* items.

Main Link Events					
	Type	Id	Position	Duration	End
▼ FRAME		1	0:020.239.117.146 30 055 212 bits	0:016.666.598.436 24 750 000 bits	0:036.905.715.582 54 805 211 bits
▼ BLANK(41 lines)			0:020.239.117.146 30 055 212 bits	0:000.607.404.920 902 000 bits	0:020.846.522.066 30 957 211 bits
▼ LINE		0	0:020.239.117.146 30 055 212 bits	0:000.014.814.753 22 000 bits	0:020.253.931.899 30 077 211 bits
CTL PERIOD			0:020.179.265.539 29 966 332 bits	0:000.060.107.497 89 260 bits	0:020.239.373.036 30 055 391 bits
▼ DATA ISLAND PERIOD			0:020.239.373.037 30 055 592 bits	0:000.000.242.422 360 bits	0:020.239.615.459 30 055 951 bits
GCP			0:020.239.386.505 30 055 612 bits	0:000.000.215.486 320 bits	0:020.239.601.991 30 055 931 bits
CTL PERIOD			0:020.239.615.460 30 055 952 bits	0:000.000.134.679 200 bits	0:020.239.750.139 30 056 151 bits
▼ DATA ISLAND PERIOD			0:020.239.750.140 30 056 152 bits	0:000.000.242.422 360 bits	0:020.239.992.562 30 056 511 bits
AVI			0:020.239.763.608 30 056 172 bits	0:000.000.215.486 320 bits	0:020.239.979.094 30 056 491 bits
CTL PERIOD			0:020.239.992.563 30 056 512 bits	0:000.607.808.959 902 600 bits	0:020.847.801.522 30 959 111 bits
▼ LINE		1	0:020.253.931.900 30 077 212 bits	0:000.014.814.753 22 000 bits	0:020.268.746.653 30 099 211 bits
▼ LINE		2	0:020.268.746.654 30 099 212 bits	0:000.014.814.753 22 000 bits	0:020.283.561.407 30 121 211 bits
▼ LINE		3	0:020.283.561.408 30 121 212 bits	0:000.014.814.753 22 000 bits	0:020.298.376.161 30 143 211 bits

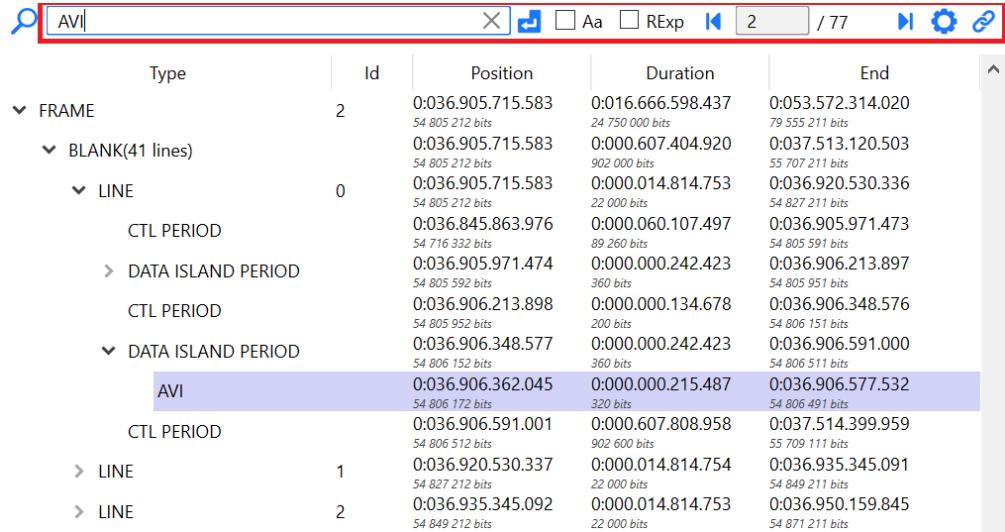

The timing format used in Link Timeline Viewer consists of two timings based on *time* and *bits*.

The time format is as follows:

seconds:milliseconds.microseconds.nanoseconds.picoseconds

In the image above you can see the time format on top and the bit format underneath (smaller grey font).

When clicking on a *Main Link Event*, both *Wave Form View* and *Symbol View* are focused, and the time stamp block of the item is highlighted as shown below.



Event timing details are shown in the columns are the following:

<i>Type:</i>	Type of item.
<i>Id:</i>	Items occurrence number.
<i>Position:</i>	Start of the event from start of the captured data
<i>Duration:</i>	Duration of the event
<i>End:</i>	End of the event from start of the captured data

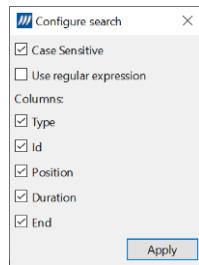
Search

You can search events by typing its name in the Search bar and pressing *enter* or by clicking the *enter* icon. The events are highlighted and shown in *Wave Form View* and *Symbol View*.

Type	Id	Position	Duration	End
▼ FRAME	2	0:036.905.715.583 54 805 212 bits	0:016.666.598.437 24 750 000 bits	0:053.572.314.020 79 555 211 bits
▼ BLANK(41 lines)		0:036.905.715.583 54 805 212 bits	0:000.607.404.920 902 000 bits	0:037.513.120.503 55 707 211 bits
▼ LINE	0	0:036.905.715.583 54 805 212 bits	0:000.014.814.753 22 000 bits	0:036.920.530.336 54 827 211 bits
CTL PERIOD		0:036.845.863.976 54 716 332 bits	0:000.060.107.497 89 260 bits	0:036.905.971.473 54 805 591 bits
DATA ISLAND PERIOD		0:036.905.971.474 54 805 592 bits	0:000.000.242.423 360 bits	0:036.906.213.897 54 805 951 bits
CTL PERIOD		0:036.906.213.898 54 805 952 bits	0:000.000.134.678 200 bits	0:036.906.348.576 54 806 151 bits
DATA ISLAND PERIOD		0:036.906.348.577 54 806 152 bits	0:000.000.242.423 360 bits	0:036.906.591.000 54 806 511 bits
AVI		0:036.906.362.045 54 806 172 bits	0:000.000.215.487 320 bits	0:036.906.577.532 54 806 491 bits
CTL PERIOD		0:036.906.591.001 54 806 512 bits	0:000.607.808.958 902 600 bits	0:037.514.399.959 55 709 111 bits
> LINE	1	0:036.920.530.337 54 827 212 bits	0:000.014.814.754 22 000 bits	0:036.935.345.091 54 849 211 bits
> LINE	2	0:036.935.345.092 54 849 212 bits	0:000.014.814.753 22 000 bits	0:036.950.159.845 54 871 211 bits

Aa: Makes search function case sensitive.

RExp: Use regular expressions.

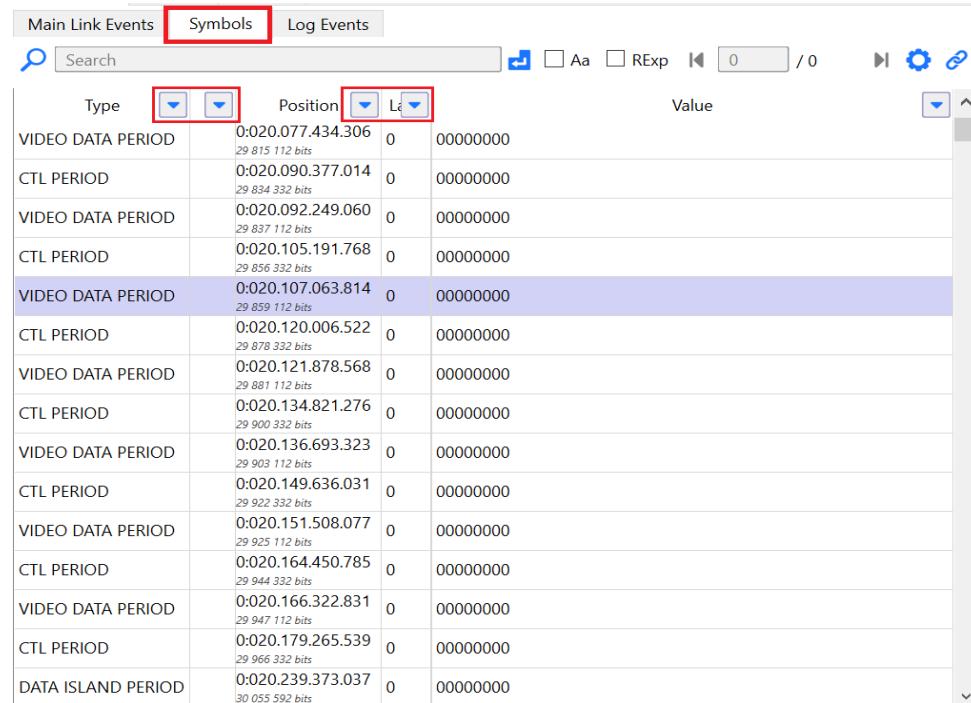

 Click the enter icon to apply filters.

 / 77

Click *Find Prev* and *Find Next* icons to navigate. Also shown is the instance (here instance 2 out of 77).

The gear icon opens *Configure search* dialog. In addition to settings described above, you can select which columns are shown in *Main Link Events* window.

Not synchronized.

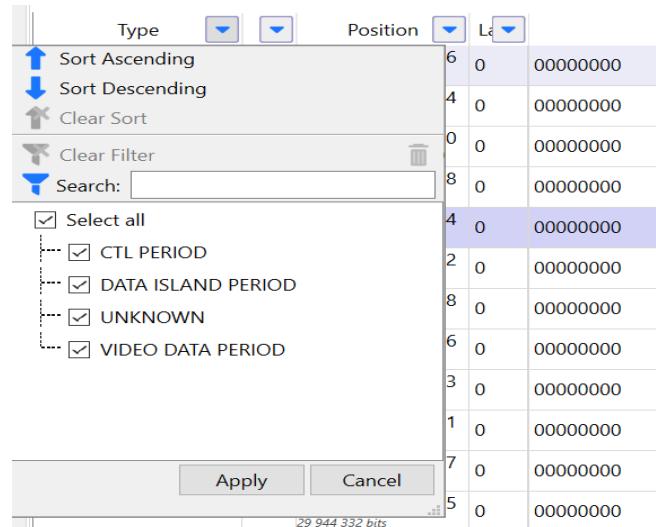


Synchronized.

Click icons to synchronize data for view.

Symbols Tab

Symbols View lists all *PERIODS*.



Type	Position	Value
VIDEO DATA PERIOD	0:020.077.434.306 29 815 112 bits	0 00000000
CTL PERIOD	0:020.090.377.014 29 834 332 bits	0 00000000
VIDEO DATA PERIOD	0:020.092.249.060 29 837 112 bits	0 00000000
CTL PERIOD	0:020.105.191.768 29 856 332 bits	0 00000000
VIDEO DATA PERIOD	0:020.107.063.814 29 859 112 bits	0 00000000
CTL PERIOD	0:020.120.006.522 29 878 332 bits	0 00000000
VIDEO DATA PERIOD	0:020.121.878.568 29 881 112 bits	0 00000000
CTL PERIOD	0:020.134.821.276 29 900 332 bits	0 00000000
VIDEO DATA PERIOD	0:020.136.693.323 29 903 112 bits	0 00000000
CTL PERIOD	0:020.149.636.031 29 922 332 bits	0 00000000
VIDEO DATA PERIOD	0:020.151.508.077 29 925 112 bits	0 00000000
CTL PERIOD	0:020.164.450.785 29 944 332 bits	0 00000000
VIDEO DATA PERIOD	0:020.166.322.831 29 947 112 bits	0 00000000
CTL PERIOD	0:020.179.265.539 29 966 332 bits	0 00000000
DATA ISLAND PERIOD	0:020.239.373.037 30 055 592 bits	0 00000000

Selection and multiview highlighting behavior is as for *Main Link Events* above.

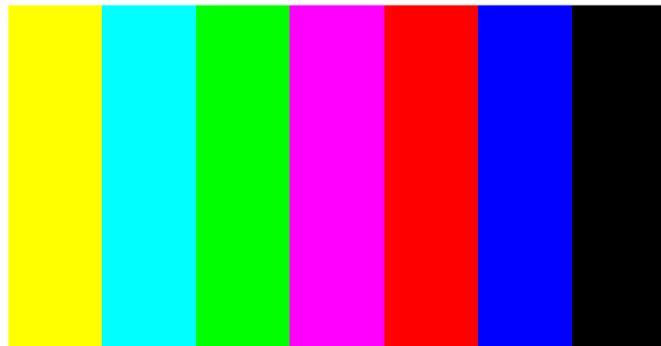
Search criteria are the same as for *Main Link Events* above.

Each column has a sort and filter icon. Shown below is for the *Type* sort and filter icon.

Event Details View

The event details are shown in the lower left panel. The event details consists of two tabs: *Image tab* and *Details tab*.

Details Tab

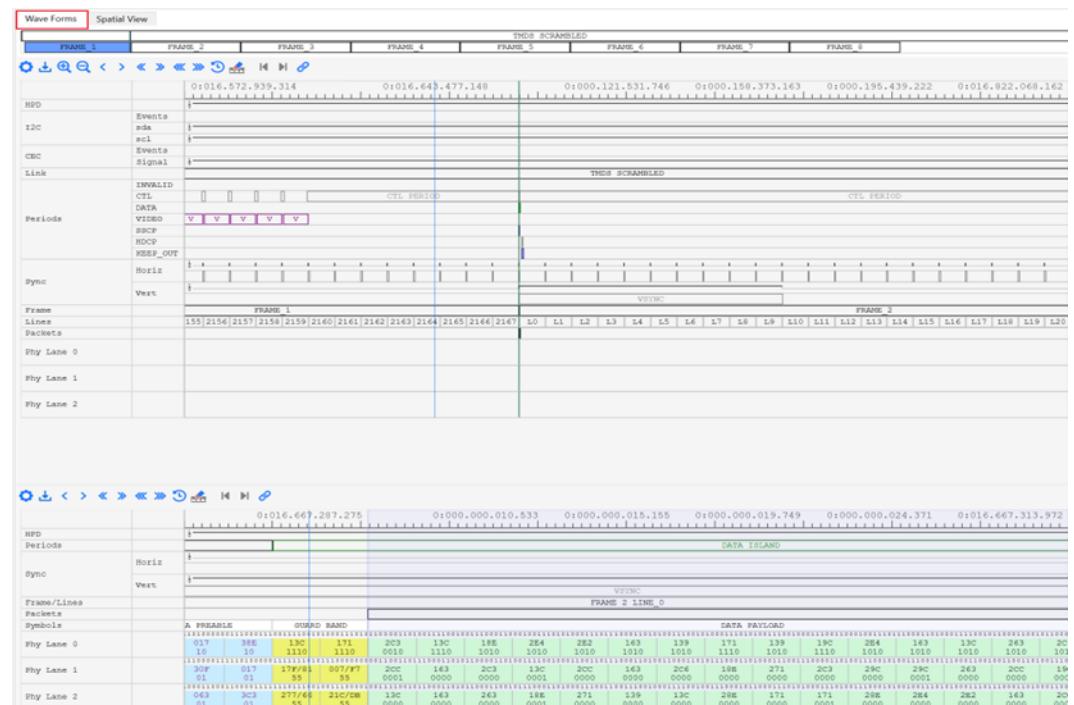

The information shown in the *Details* tab depends on the selected item. A *FRAME* item is shown below.

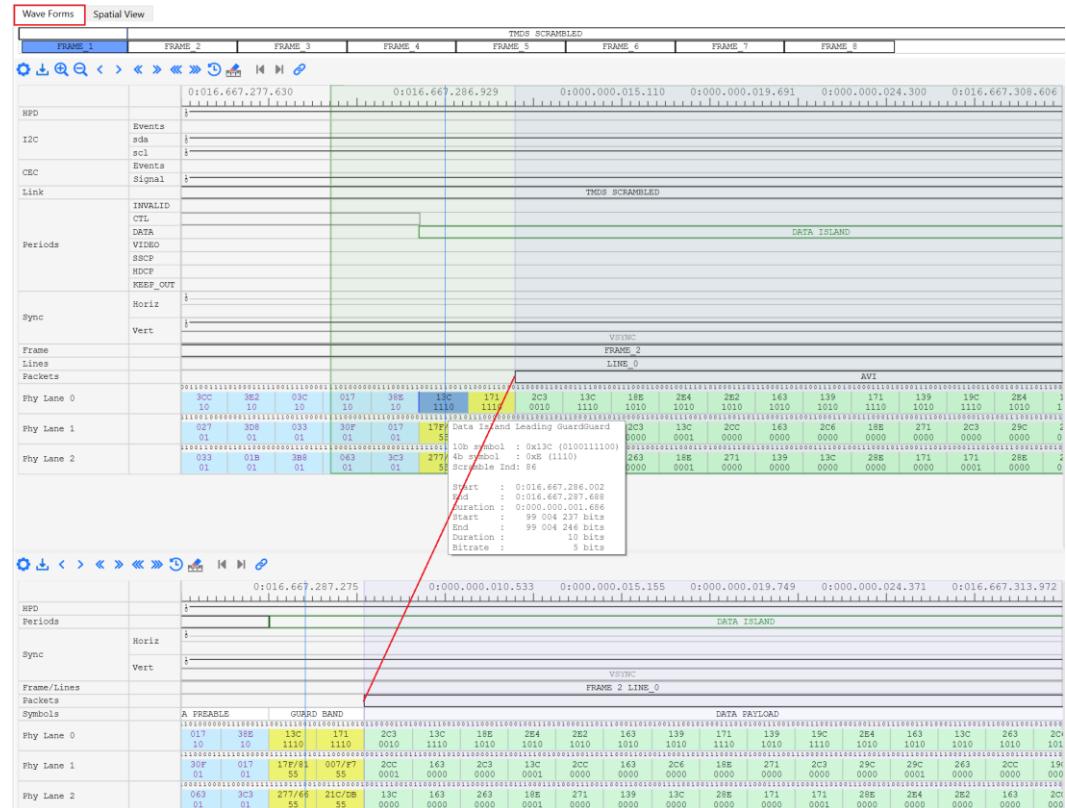
```
Details Image
[FRAME]
Start      : 0:020.239.117.146;      30 055 212 bits
End        : 0:036.905.715.582;      54 805 211 bits
Duration   : 0:016.666.598.436;      24 750 000 bits
---
HTotal    : 2200
VTotal    : 1125
HActive   : 1920
VActive   : 1080
HSyncWidth: 44
VSyncWidth: 5
HBackPorch: 148
VBackPorch: 36
HFrontPorch: 88
VFrontPorch: 4
HStart    : 192
VStart    : 41
BPP       : 24
Colorspace: RGB
Sampling  : 4:4:4
```

Images Tab

Image for currently selected *FRAME* can be viewed (only when *FRAME* is selected).

Details Image

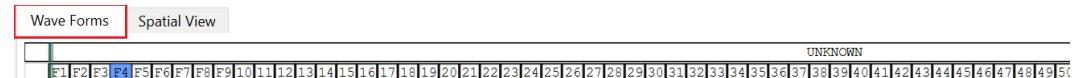

Wave Forms View


Wave Form View consists of two tabs: *Wave Forms* and *Spatial View*.

Wave Forms Tab

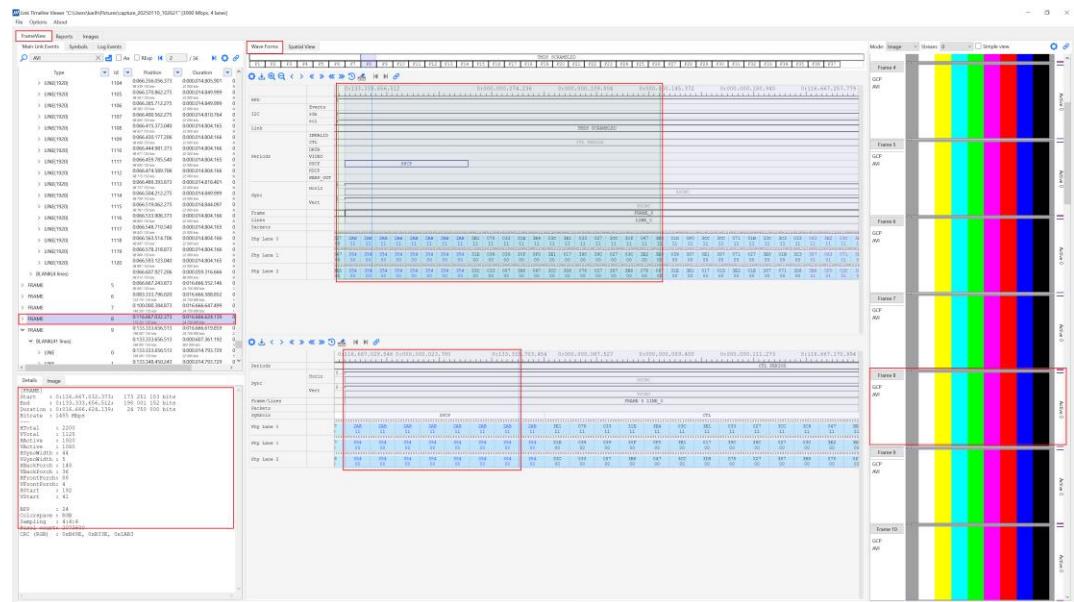
Wave Form View looks different depending on zoom level. Images below show the views in zoomed out and zoomed in states.

Event periods are shown under the timeline (at the top) in their proper row as *period rectangles* with text descriptions (or abbreviations or no text, space permitting). Double-clicking a *period rectangle* will highlight the timeline portion of the rectangle and the row header(s). To zoom the Wave Form View, position the cursor and use the mouse wheel to zoom in or out with respect to the cursor location. Drag to scroll the Wave Form View and the Symbols View horizontally.

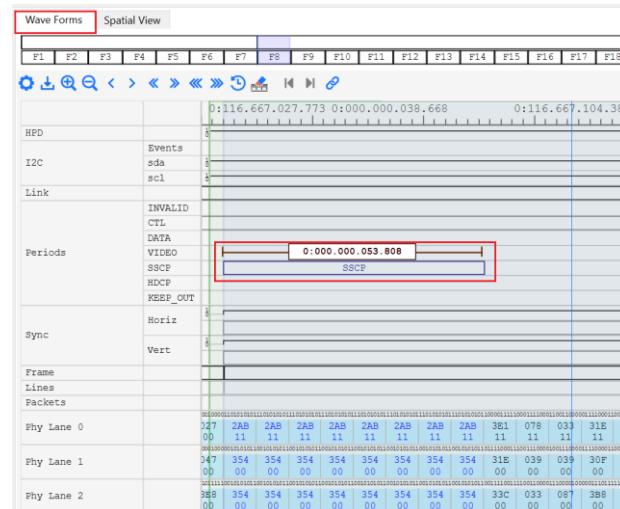


Columns are:

HPD	Hot Plug Detect signal.
I2C	I2C Events and signals sda and scl
CEC:	CEC Events and Signal
Link	Link type (TMDS SCRAMBLED for ex.)
Periods	INVALID, CTL, DATA, VIDEO, SSCP, HDCP, KEEP_OUT
Sync	HSYNC and VSYNC periods and signals
Frame	Frame number.
Lines	ACTIVE and BLANK lines
Packets	GCP and AVI packets
PHY Lane 0	Lane 0 data
PHY Lane 1	Lane 1 data
PHY Lane 2	Lane 2 data


The scroll bar at the top shows all captured frames. Select a frame by double-clicking.

As you hover over the timeline, a timestamp for that position is displayed on the timeline at the cursor horizontal location.

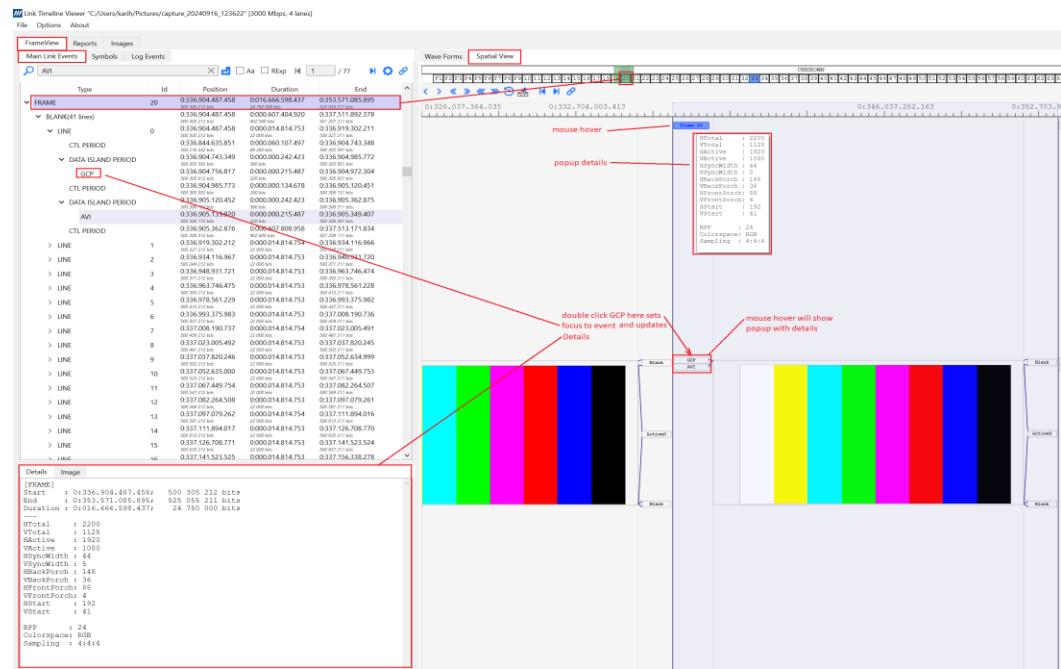

Popups show details of events as you hover over them in Wave Form View.

Below illustrates how the different views align when you double click in the Wave Form View or the Symbols View.

Measuring

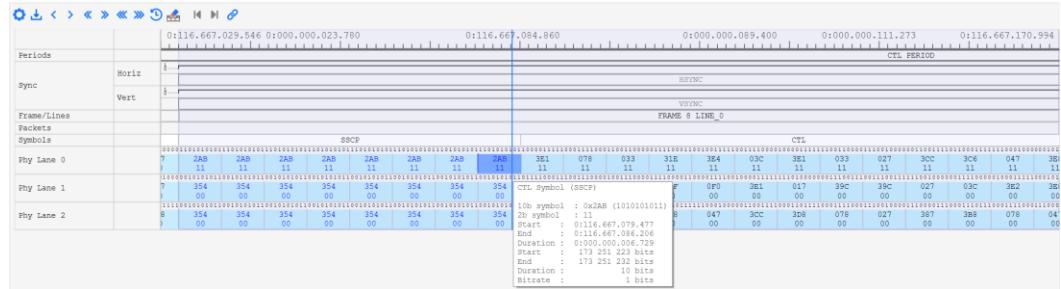
The ruler tool allows users to measure the time between two points on the timeline. When you right click on the timeline, a point will appear. Right click again on the timeline and the distance between the two points will be shown as illustrated below. Use the eraser tool to remove measures.

Spatial View Tab


Frame pixel images are shown in *Spatial View*.

Drag to scroll *Frames*.

Double-clicking the timeline when *Spatial View Tab* is active will select the event in *Event Selector View*.


A popup showing details will be shown when hovering over a *Frame* or HDMI data packets such as *GCP* and *AVI*.

Hover over an event to see event details in a popup window. Double-click an event will to select it in and see details in *Event Details View*.

Symbols View

Like *Wave Form View*, *Symbol View* presents HDMI transmission data and periods. As with *Wave Form View*, drag to scroll horizontally or use the *settings* ribbon arrow keys.

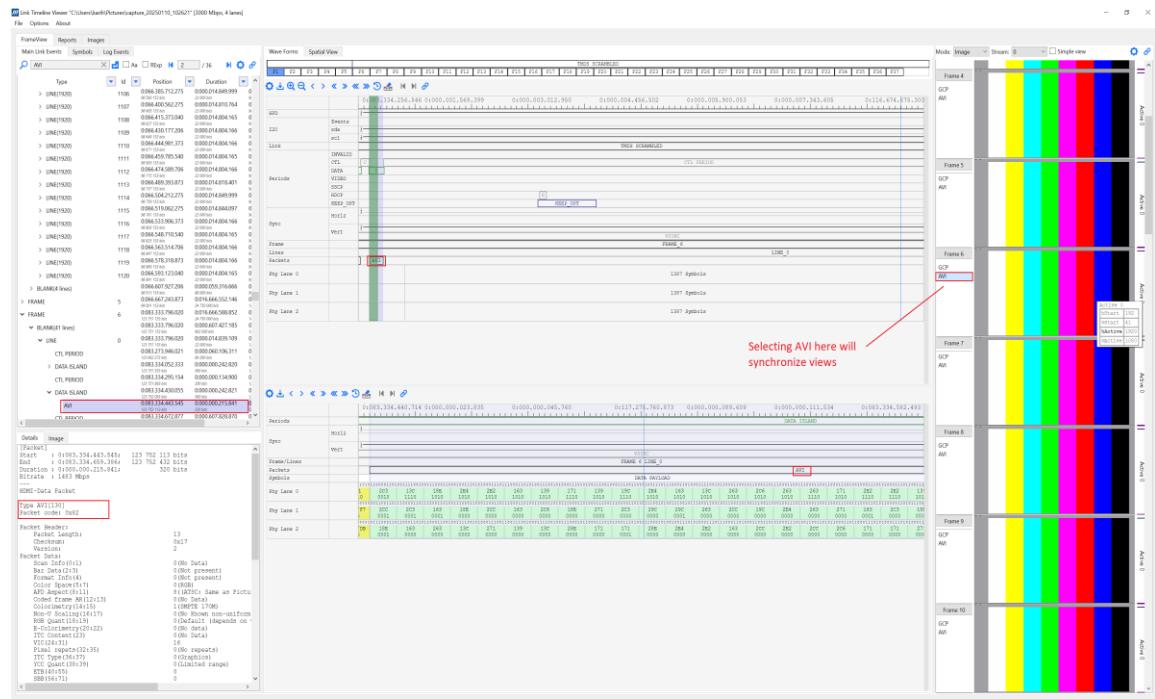
<i>Periods</i>	<i>Transmission PERIODs</i>
<i>Sync</i>	<i>Horiz and Vert periods</i>
<i>Frame/Lines</i>	<i>Frame and Line number</i>
<i>Packets</i>	<i>HTML GCP and AVI packet identifiers</i>
<i>Symbols</i>	<i>HDMI transmission symbols.</i>
<i>Phy Lane 0</i>	<i>TMDS Channel 0 data.</i>
<i>Phy Lane 1</i>	<i>TMDS Channel 1 data.</i>
<i>Phy Lane 2</i>	<i>TMDS Channel 2 data.</i>

Illustrated below are the TMDS channel values for *PIXELs* for the color white. Note from the tool tip that the value has been scrambled.

00011101110110000110100010011010111101010101000001001111
1DC FF 2C6 2C8 17D 2AB 20B FF FF FF FF
107 FF 10b symbol : 0x1DC (0111011100)
scramble index: 90394
100001000100 090 FF Start : 0:020.847.882.330
End : 0:020.847.889.064 Duration : 0:000.000.006.734
000 FF Start : 30 959 232 bits
End : 30 959 241 bits Duration : 10 bits
INE(1920)

Illustrated below are the values for a SSCP period. Note from the tooltip that this is not scrambled.

SSCP
CTL
0110101011101010101110101010111010101011101010101010101010111
2AB 2AB 2AB 2AB 2AB 2AB 2AB 2AB
11 11 11 11 11 11 11 11
354 354 354 354 354 354 354 354
00 00 00 00 00 00 00 00
10b symbol : 0x2AB (1010101011)
Value2
Start : 0:020.239.137.348
End : 0:020.239.144.082 Duration : 0:000.000.006.734
3FF 001 000 3FE
Start : 30 055 242 bits
End : 30 055 251 bits Duration : 10 bits


Each individual block contains the following information (tooltip also shown).

<i>First row</i>	10b/8b symbol in HEX format
<i>Second row</i>	Descrambled value.

Frame Image View

Frame Image View can be used to select *Frames* and GCP or AVI periods and synchronizing with other views.

As shown below, selecting the *AVI* event in *Frame Image View* also selects it in *Event Selector View* and synchronizes the other views. Hovering over the *Active0* area will show the frame geometry details.

Mode can be *Image* or *Rect* (shows just a green rectangle to save processing time).

Stream combobox and Simple view checkbox do not work at present.

7. EVENT TIMELINE VIEWER

Event Timeline Viewer is an application for inspecting data captured in capture tab.

Event Timeline Viewer consists of four areas.

1. Frame View
2. Event View
3. Event Log
4. Details / Image

Frame View

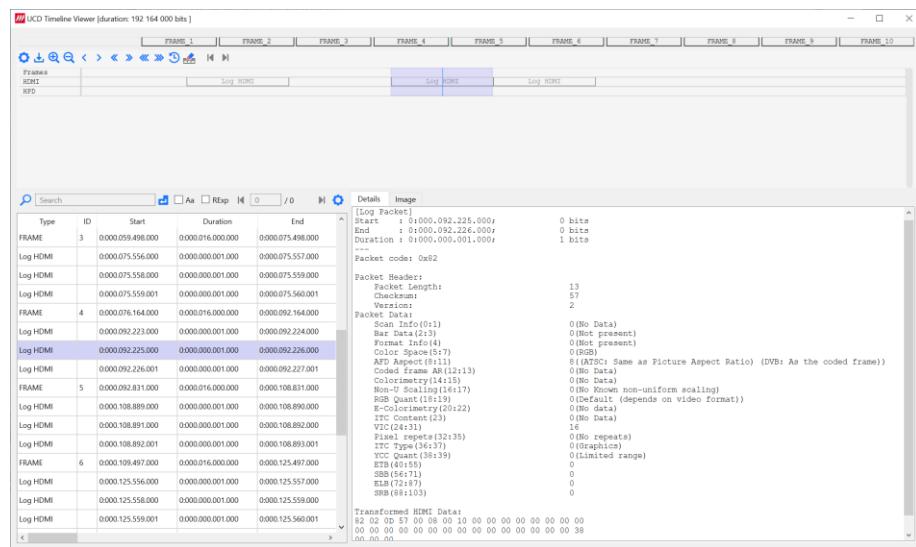
The uppermost panel shows the captured frames. The selected frame is highlighted in purple. You can select a frame by double-clicking it. The area highlighted in green indicates the area shown in the Events view. Please, note that you cannot zoom in or out in the frame view.

Event View

The view below shows all frames and events selected in the capture tab. The area highlighted in green in frame view indicates the area shown in events view.

Tools

Tool	Function
Gear Icon	Hide / add events on the timeline
Save Icon	Save, load, remove, import, export and remove presets
Magnifying Glass Icons	Zoom in/out on the timeline
Arrow Icons	Move on the timeline. More arrows moves the timeline more. You can also move by clicking and dragging on the timeline.
Move to a time point	Move to a certain time point on the timeline by double clickin on the timeline. The selected event is highlighted in the event log. By right clicking on the timeline and right clicking again you can measure distance between two time points.
Erase all rulers	Erase all measurements made.


Zooming on the timeline

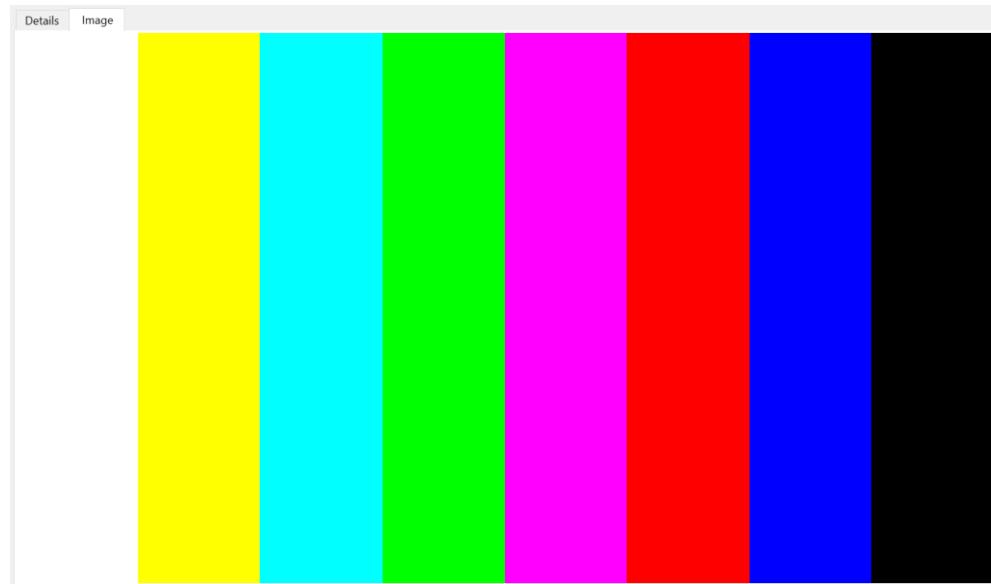
Went the timeline is zoomed out, you can see events as grey lines. When you zoom in you can see the event block. You can zoom in either with the magnifying glass icons or by scrolling with your mouse.

When you double click on event or frame, the corresepnding event or frame is selected in the event log and highlighted in purple.

Event Log

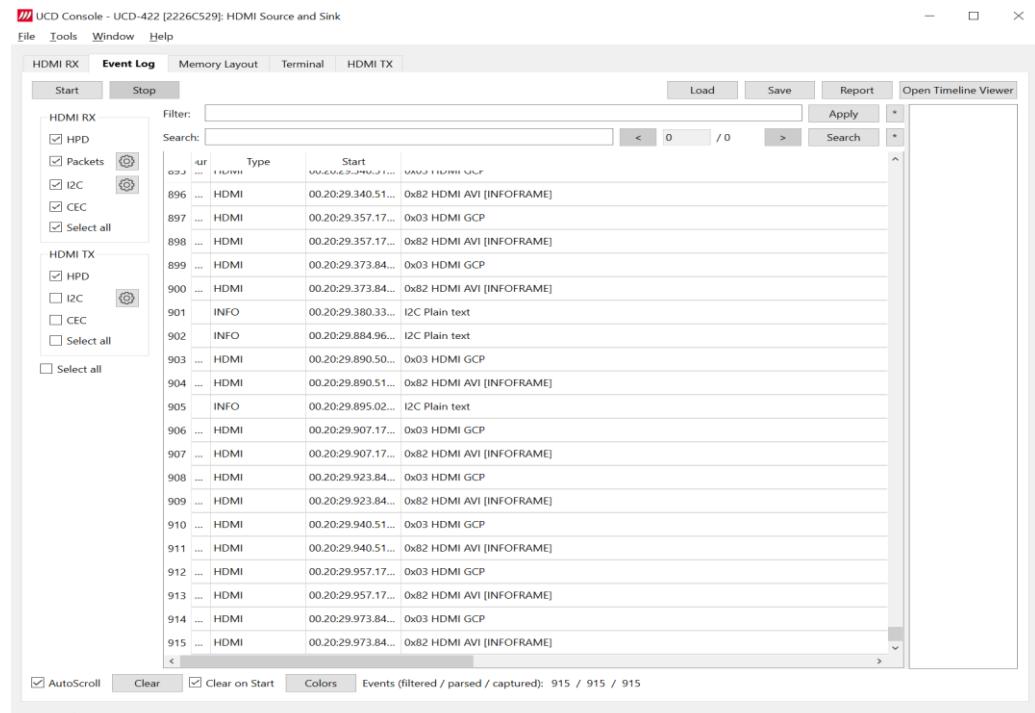
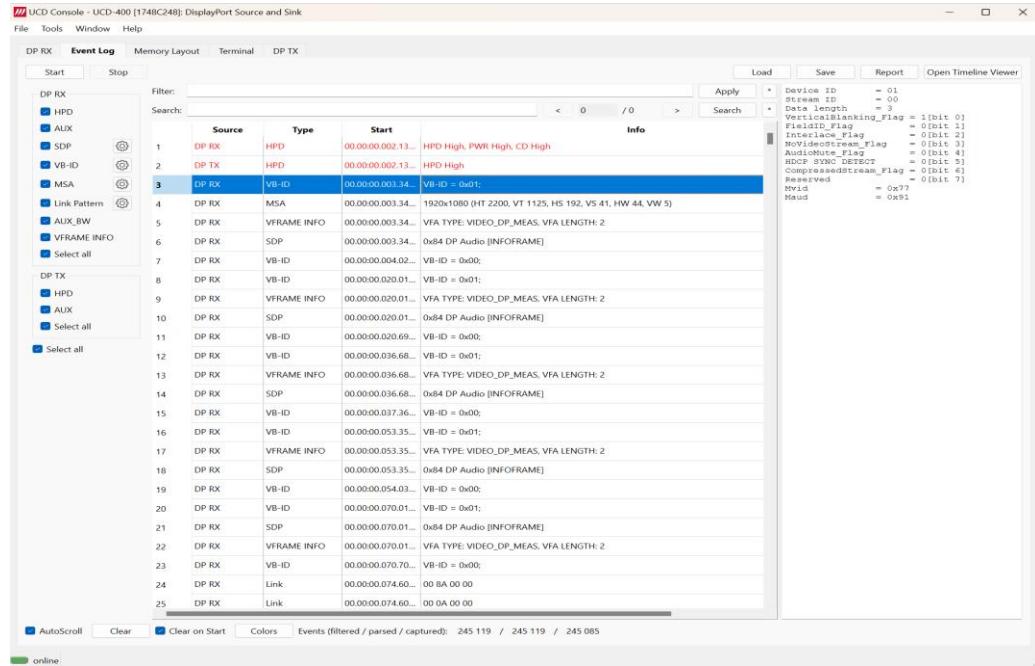
Type	ID	Start	Duration	End	Info
FRAME	3	0:000.059.498.000	0:000.016.000.000	0:000.075.498.000	
Log HDMI		0:000.075.556.000	0:000.000.001.000	0:000.075.557.000	0x03 HDMI GCP
Log HDMI		0:000.075.558.000	0:000.000.001.000	0:000.075.559.000	0x82 HDMI AVI [INFOFRAME]
Log HDMI		0:000.075.559.001	0:000.000.001.000	0:000.075.560.001	0x84 HDMI Audio [INFOFRAME]
FRAME	4	0:000.076.164.000	0:000.016.000.000	0:000.092.164.000	
Log HDMI		0:000.092.223.000	0:000.000.001.000	0:000.092.224.000	0x03 HDMI GCP
Log HDMI		0:000.092.225.000	0:000.000.001.000	0:000.092.226.000	0x82 HDMI AVI [INFOFRAME]
Log HDMI		0:000.092.226.001	0:000.000.001.000	0:000.092.227.001	0x84 HDMI Audio [INFOFRAME]
FRAME	5	0:000.092.831.000	0:000.016.000.000	0:000.108.831.000	
Log HDMI		0:000.108.889.000	0:000.000.001.000	0:000.108.890.000	0x03 HDMI GCP
Log HDMI		0:000.108.891.000	0:000.000.001.000	0:000.108.892.000	0x82 HDMI AVI [INFOFRAME]
Log HDMI		0:000.108.892.001	0:000.000.001.000	0:000.108.893.001	0x84 HDMI Audio [INFOFRAME]
FRAME	6	0:000.109.497.000	0:000.016.000.000	0:000.125.497.000	
Log HDMI		0:000.125.556.000	0:000.000.001.000	0:000.125.557.000	0x03 HDMI GCP
Log HDMI		0:000.125.558.000	0:000.000.001.000	0:000.125.559.000	0x82 HDMI AVI [INFOFRAME]
Log HDMI		0:000.125.559.001	0:000.000.001.000	0:000.125.560.001	0x84 HDMI Audio [INFOFRAME]
FRAME	7	0:000.126.164.000	0:000.016.000.000	0:000.142.164.000	

Event log shows all captured events and frames. The following info is presented in the table:


Type	Function
ID	Number of captured frame
Start	Start of the event
Duration	Duration of the event
End	End of the event
Info	Additional information about the event.

Event Log Tools

<input data-bbox="425 1230 476 1259" type="text"/> Search	Search events from the event log. Search results are highlighted in purple.
<input type="checkbox"/> Apply search filters	Apply filters.
<input type="checkbox"/> Aa <input type="checkbox"/> RExp Search filters	Aa filter: Make search case sensitive RExp: Use regular expressions in search
<input data-bbox="425 1445 452 1474" type="text"/> / 12 Search results	Shows search results. Move from one search result to another by clicking the arrows.
Configure	Select which columns are shown in event log.



Details / Image

Details tab shows details of the selected event. When the selected event is a frame, the image tab shows the captured frame.

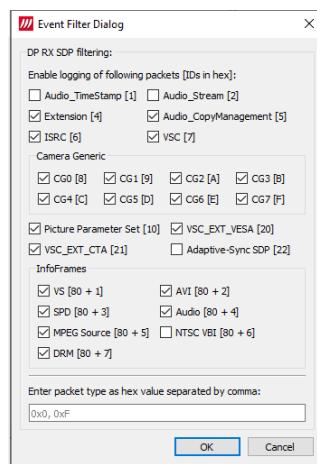
8. EVENT LOG

Event Log dialog is divided into two panels: the left panel lists all transactions, and the right panel shows the parsed transaction data for the line selected in the list on the left.

Role	Logged Events
DP Sink (UCD-400)	HPD, AUX, SDP, VB-ID, MSA, Link Pattern, AUX_BW, VFRAME INFO
DP Alt Mode Sink (UCD-424)	
HDMI Sink (UCD-422)	HPD, Packets, I2C, CEC
DP Source (UCD-400, UCD-411, 451)	HPD, AUX
DP Alt Mode Source (UCD-424)	
HDMI Source (UCD-422, UCD-412, 452)	HPD, I2C, CEC
DP Alt Mode Sink (UCD-424)	PD, LSE
DP Alt Mode Source (UCD-424)	
<i>Start</i>	Starts event logging and stop it by clicking <i>Stop</i> .
<i>Save</i>	Save transactions as Event Log data.
<i>Load</i>	Load Event Log data.
<i>Report</i>	Store event logs as reports in HTML format.
Open Timeline Viewer	Open Event timeline Viewer to inspect the captured data. For detailed instructions refer to chapters 6 and 7 of this manual.
<i>AutoScroll</i>	When selected, transaction list is scrolled vertically. The latest transaction is shown as the last item of the list. When not selected, the items shown before clicking <i>Start</i> will be shown.
<i>Events</i>	Number of events detected.
<i>Colors</i>	Open configure colors dialog.
<i>Clear/Clear on Start</i>	Click to clear transaction list. When <i>Clear on Start</i> is selected, the list is cleared when clicking <i>Start</i> .

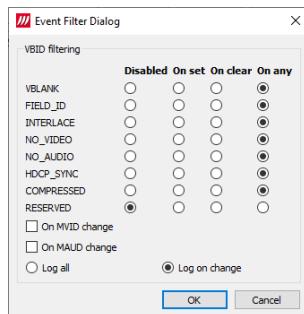
Logged Events

HPD

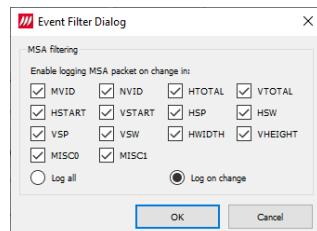

Status and status changes of Hot Plug Detect (HPD) signal, power detection status and cable connection status.

AUX

DP Log DP AUX Channel transactions and Sideband Messaging.


SDP

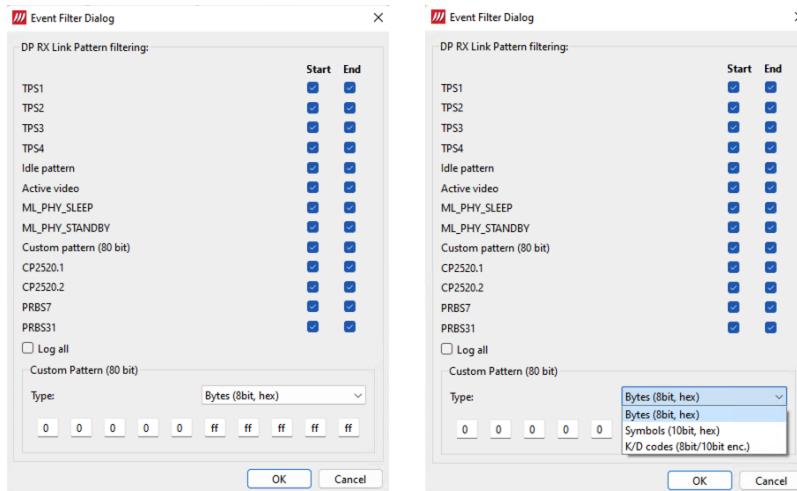
Log DP Secondary-data Packets. Click the button to open the *Event Filter Dialog*. The dialog enables filtering of SDP packets. In the dialog, the reference to Packet Type Value is indicated in square brackets “[]”.


VB-ID

Log Vertical Blanking ID packets sent in DP stream. Click the button to open the *Event Filter Dialog*. The dialog enables definition of which events will be logged.

MSA

Log Main Stream Attributes sent in DP stream. Click the button to open the *Event Filter Dialog*. The dialog enables logging of all MSA:s or just changes to selected parameters.



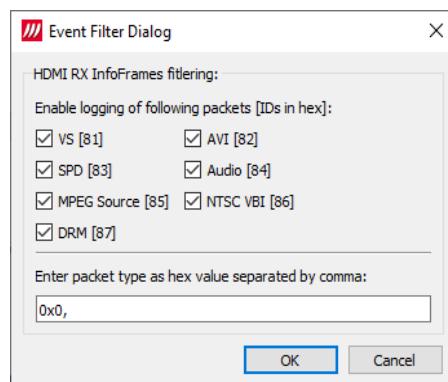
Link Pattern

Click the button to open the *Event Filter Dialog*.

Log link patterns. Event filter dialog sets the type of link patterns that will be captured.

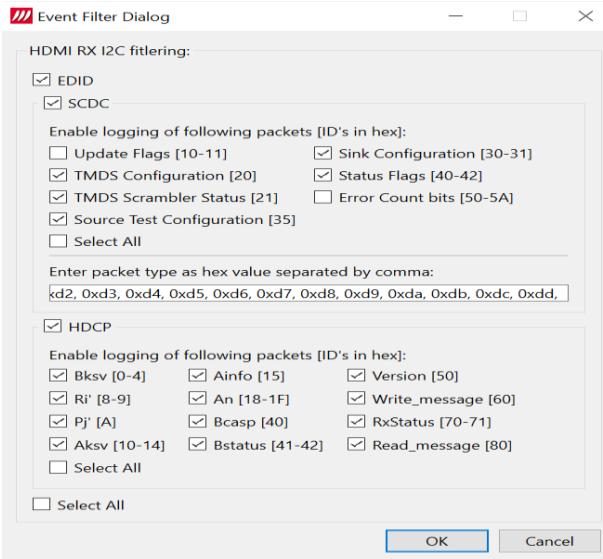
Custom Pattern (80 bit) is a sequence that either splits into 10 bytes or 8b/10b encoded symbols. For 10b symbols, either K/D codes or hex values must be provided. For bytes, hex values must be provided.

AUX_BW


Log AUX_Bitwise transactions as a series of Manchester II codes.

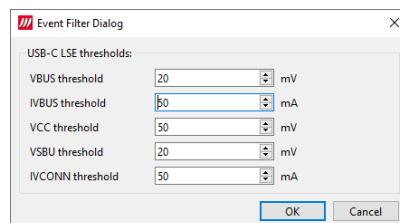
VFRAME INFO

Dimensions of the catured frame measured by the Sink.


Packets

Log metadata sent by Source device in HDMI stream.

I2C


Log data sent over I2C communication lines of HDMI interface. Click the button to open the *Event Filter Dialog* (either HDMI RX or HDMI TX dialogs).

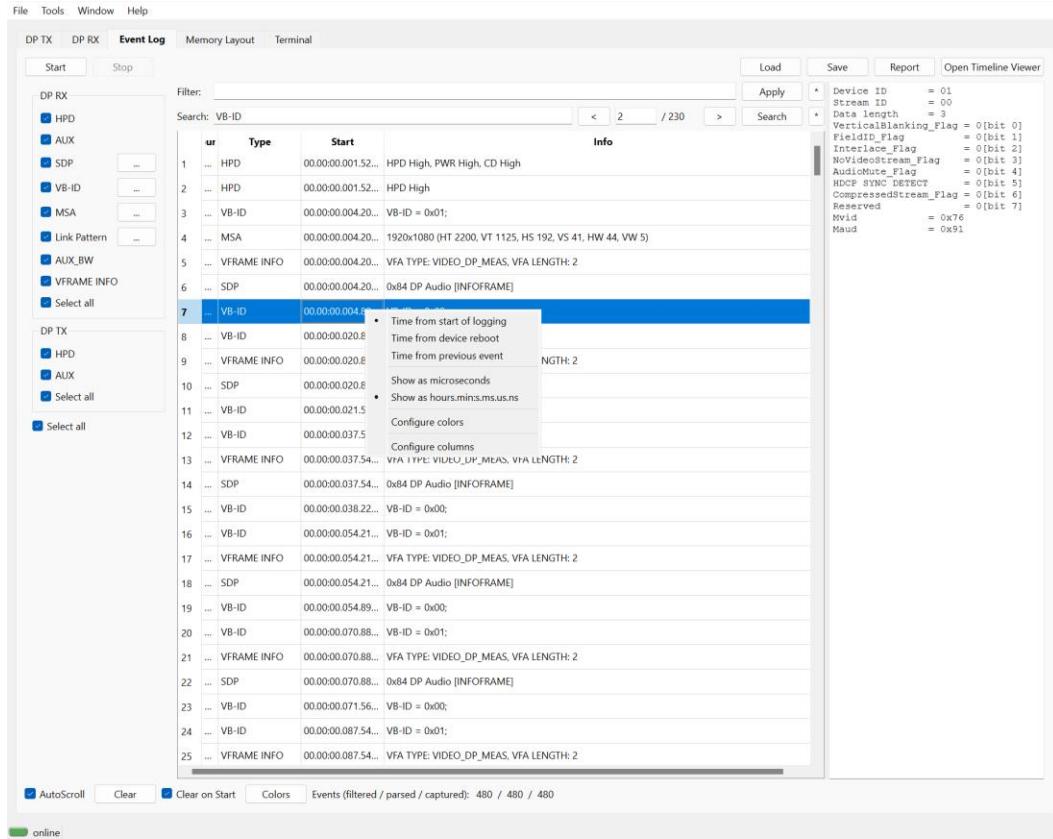
PD

Log USB-C PD communication messages.

CEC

Log HDMI CEC communication messages.

LSE


Low Speed Electrical logger captures the Voltage and Current on the low-speed lanes of the USB-C connector including CC, VBUS, VCONN, and SBU.

Event Filter Dialog sets the threshold values for capturing the changes. Parsed transaction data shows the captured data with indication of the changed values.

Event Transaction List

Transaction data in Transaction List is ordered in columns. Each column provides additional information about the data line, facilitating its viewing and interpretation.

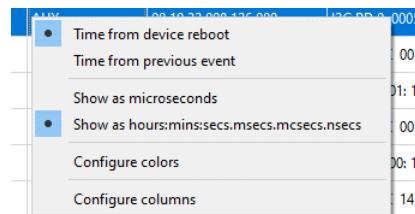
You can search events by typing its name in the Search bar and pressing enter or selecting the **Search** button. Pressing F3 (Ctrl+G on macos) takes you to the next found and Shift+F3 (Shift+Ctrl+G on macOS) takes you to the previous found.

Source: The communication port: DP RX, DP TX, HDMI RX, HDMI TX or HDCP 1.X, HDCP 2.3

Type: The logged item:
HPD, AUX, SDP, VB-ID, MSA, Link Pattern, AUX_BW, VFRAME INFO (DP or DP Alt Mode)
HPD, Packets, I2C, CEC (HDMI)

Start: Each line is identified by its timestamp, marking the instant when an event or error was detected, or when a data transaction got started.

The timestamp can be displayed as a time delay from the start of the acquisition (absolute) or from the previous line (relative). The timestamp can be displayed in milliseconds or in minutes, seconds, and microseconds.


Info: This column provides a short description of the message content

When hovering the mouse over the transaction list, a mouse-over window will open. It provides a brief list of the content in the transaction under the mouse.

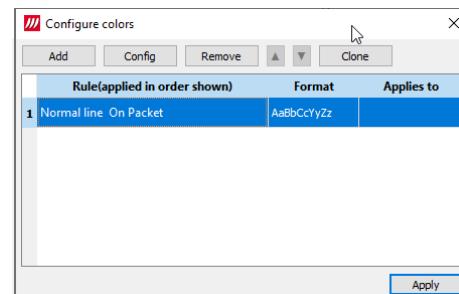
Customizing Transaction List

User can change what data is shown in the transaction list by adding and removing columns or limiting the transaction types in the list. User can also color highlight various types of transactions for better readability.

Right-click on the list to open the menu.

Configure Start

The time indicated in column *Start* can be either:


- Time from device reboot
- Time from previous event

The time can be expressed either:

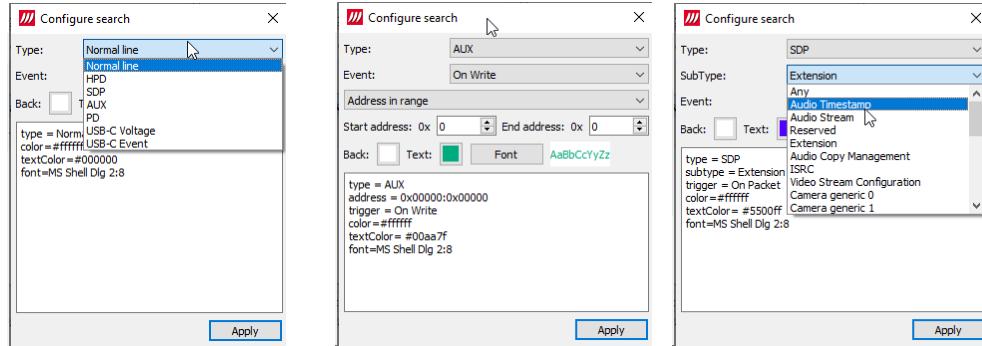
- In microseconds (1/1 000 000 Second)
- Hours : minutes : seconds : milliseconds : nanoseconds

Configure Colors

Configure colors dialog allows the user to highlight various types of transactions in the list by changing character color and background color of the transaction line.

Add: Add a new color highlight rule

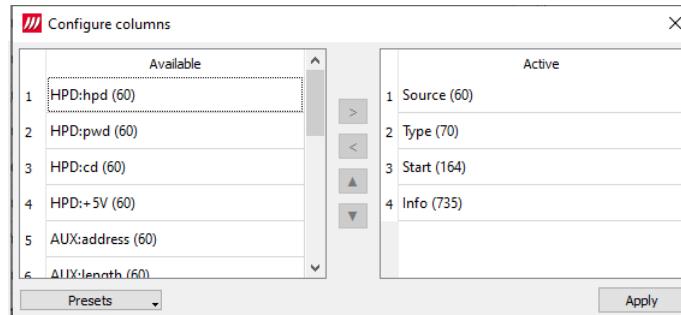
Config: Modify the selected rule


Remove: Delete the selected rule

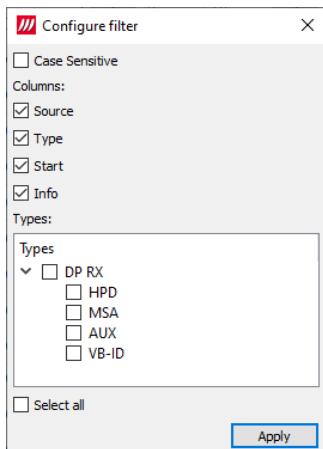
Clone: Duplicate the selected rule

▲ ▼: Change order where rules are applied.
The rules are applied from the bottom to the top of the list.

Adding Rules


The color highlight rules are set by transaction type. The content of *Add rules* dialog is dependent on the type of item selected.

Configure Columns


In the dialog there are two columns: *Available* and *Active*. An item from Available list can be included in Active columns by selecting it and clicking on the right arrow [>] in the middle of the two columns.

The order of Active items can be changed by selecting an item and moving its position in the list with up ▲ and down ▼ arrows.

Type Filter

Type filter dialog lists the types of transactions found in the list and allows the user to select which

transaction lines are currently shown.

Quick Filter

By entering a DPCD address in the Quick Filter field on top of the transaction line, the user can limit the list to show only the reads or writes to this DPCD address.

Event Details

HPD

HPD transactions include the following statuses:

<i>Hot-Plug-Detect Level:</i>	Status of HPD signal: HIGH (Asserted), LOW (De-asserted)
<i>PWD Level:</i>	Status of source device detection: High (DP Tx detected), LOW (DP Tx not detected)
<i>Cable Detect Level:</i>	Status of cable detection HIGH (Cable connection detected) LOW (Cable connection not detected)

```
Device ID      = 01 [DP RX]
Hot-Plug-Detect Level = HIGH
PWD Level     = HIGH (DP Tx is connected to Rx and has power applied to AUX pull-up resistor)
Cable Detect Level = HIGH
```

Packets (UCD-422, UCD-452)

Log metadata sent by Source device in HDMI stream

```
Packet code: 0x82

Packet Header:
  Packet Length:          13
  Checksum:              57
  Version:                2

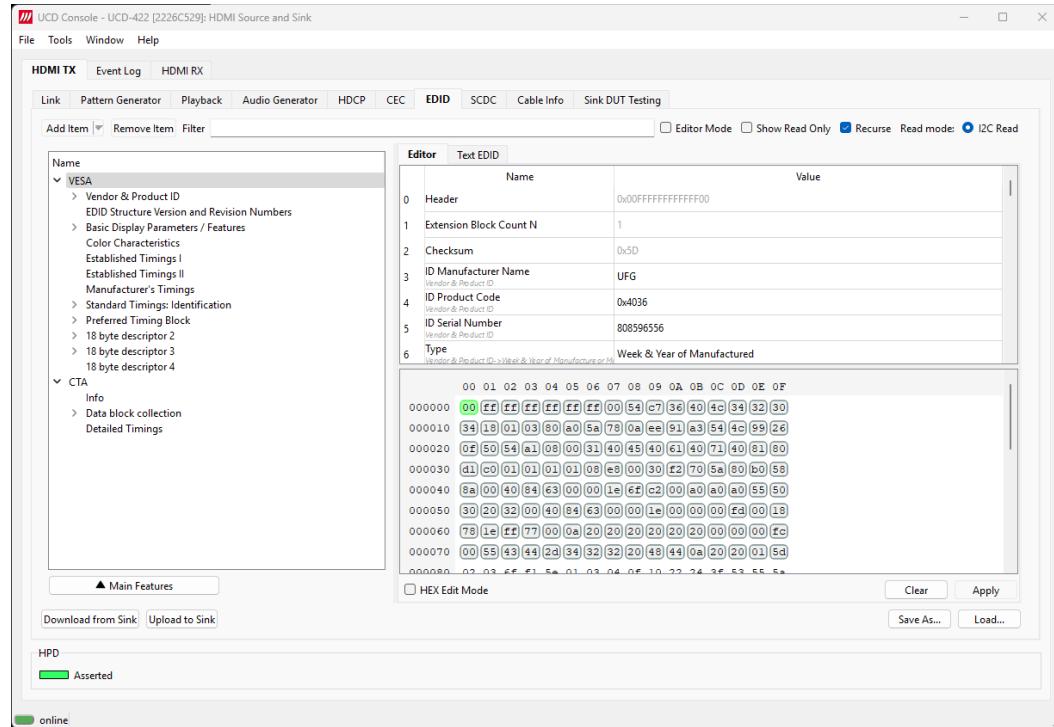
Packet Data:
  Scan Info(0:1)          0 (No Data)
  Bar Data(2:3)            0 (Not present)
  Format Info(4)           0 (Not present)
  Color Space(5:7)          0 (RGB)
  AFD Aspect(8:11)          8 ((ATSC: Same as Picture Aspect Ratio) (0)
  Coded frame AR(12:13)      0 (No Data)
  Colorimetry(14:15)        0 (No Data)
  Non-U Scaling(16:17)       0 (No Known non-uniform scaling)
  RGB Quant(18:19)          0 (Default (depends on video format))
  E-Colorimetry(20:22)       0 (No data)
  ITC Content(23)           0 (No Data)
  VIC(24:31)                16
  Pixel repeats(32:35)       0 (No repeats)
  ITC Type(36:37)           0 (Graphics)
  YCC Quant(38:39)           0 (Limited range)
  ETB(40:55)                 0
  SBB(56:71)                 0
  ELB(72:87)                 0
  SRB(88:103)                0

Transformed HDMI Data:
82 02 00 57 00 08 00 10 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 38
00 00 00
```

I2C (UCD-422, UCD-452)

Log data sent over I2C communication lines of HDMI interface

```
Message:
HDRX SCDC: RD 0x10:UPDATE[0] 0x0
```


CEC (UCD-422, UCD-452)

CEC messages

```
Device ID: 00
Flags: 00
Data length: 7
Ackonledges vector: 0x001F
-----
Header:
  Initiator address: 0x00
  Destination address: 0x0F
-----
Opcode Block:
  Opcode: <Report Physical Address>(0x84)
-----
[Physical Address] 0.0.0.0
[Device Type] TV(0x00)
```

9. EDID EDITOR

The *EDID Editor* main window is divided into three views. The bottom area additionally has command buttons. The top left tree view selection determines the blocks to be edited. The top right view shows data for the currently selected item in the top left view. These values may be edited when the *Editor Mode* checkbox is checked. The bottom right hex view shows that data as hex values. The hex values of the currently selected item in the top left view are highlighted. Values can be edited when the *HEX Edit Mode* checkbox is checked.

Add Item Add a new EDID block. Available when in *Editor Mode* exclusively and a top node in treeview (CTA or VESA) is selected.

Remove Item Delete the selected EDID. Available when in *Editor Mode* exclusively and a top node in treeview (CTA or VESA) is selected.

Filter Show only items having the filter string in the field name.

Editor Mode See below.

Show Read Only Automatically generated non-editable fields are additionally shown.

Read mode Data read mode:
I2C (using I2C protocol) or SBM (MST mode only): virtual channels read via SBM protocol.

Recurse All subitems of the selected item are presented in *Editor View*.

Virtual Sink #1 (DP) Dropdown labeled with the currently selected virtual sink (MST).

The buttons at the bottom of the dialog differ based on role: Analyser (*Read from TE* and *Write to TE*) or Generator (*Download from Sink* and *Upload to Sink*).

Main Features	
<input type="checkbox"/> HEX Edit Mode	<input type="checkbox"/> HEX Edit Mode
<input type="button" value="Read from TE"/> <input type="button" value="Write to TE"/>	<input type="button" value="Clear"/> <input type="button" value="Apply"/>
<i>Read from TE (Analyzer)</i>	Read device local EDID blocks into editor (<i>HEX Edit Mode</i> must be unchecked).
<i>Write to TE (Analyzer)</i>	Write editor data to device local EDID blocks.
<i>Download from Sink (Generator)</i>	Read EDID blocks from connected sink device into editor.
<i>Upload to Sink (Generator)</i>	Write editor EDID blocks to connected sink device. See note below.
<i>Editor Mode</i>	Enable editing EDID content in top right view. For example, for testing purposes, it's possible to load invalid EDID/DisplayID data and write it to TE without modifications. Once <i>Editor Mode</i> is enabled, the validator corrects errors such as invalid checksums. Top right view name-value pairs can be edited.
<i>HEX Edit Mode</i>	Enable editing EDID content in bottom right HEX view. When enabled, HEX values may be edited. Click <i>Apply</i> to validate changes and update other views.
<input type="button" value="Save As..."/>	Save the current editor data to disk in various formats: binary, hex, ecd, txt and xml.
<input type="button" value="Load ..."/>	Load EDID/DisplayID data from disk. Same formats as above available.

Note:

A source device is always able to read EDID data of the connected Sink device. The connected sink device may or may not allow its EDID content to be modified.

Select the *Main Features* button to view items of common interest. For example, whether the sink is capable of HDR, or Dolby Vision, etc.

Features		CTA v3
	Name	Value
1	Max Resolution	10240 x 4320
2	10K Max Frame Rate	60 Hz
3	8K Max Frame Rate	60 Hz
4	4K Max Frame Rate	145 Hz
5	2K Max Frame Rate	145 Hz
6	HDR Static	Disabled
7	HDR Dynamic	Disabled
8	HDR10+	Disabled
9	Dolby Vision	Disabled
10	SBTM	Disabled

The *Main Features* view *CTA v3* tab (available only in EDID tab not DisplayID tab) allows enabling/disabling features. You enable/disable a feature by selecting the *Value* field with *Editor Mode* enabled (AND HEX Edit Mode disabled). When a value is disabled and you want to enable it, the *Editor View* will be blank as focus has been set on the values to be enabled (and are zero when disabled). New highlighted hex values will be added and highlighted in the lower right *Hex View*. New node data will also appear under the CTA node in the top left tree view.

Features		CTA v3
	Name	Value
1	HDR Static <small>Data block collection</small>	Disabled
2	HDR Dynamic <small>Data block collection</small>	Disabled
3	HDR10+ <small>Data block collection</small>	Disabled
4	Dolby Vision <small>Data block collection</small>	Disabled
5	SBTM <small>Data block collection</small>	Enabled

EDID Editor Features

A practically unlimited number of extension blocks may exist in a single collection. Most EDID blocks contain a structure that is very similar to a tree structure. The Editor decodes each block into a tree view of the block. The tree view then contains all values within the data block. Contents can be browsed. The Editor has a support for automatic variables, such as the block checksum. When a value in a block is modified, the checksum will be updated. Automatic variables are read only. A log print will be made when an automatic variable is updated by the editor.

Editing Tips

Editing is straightforward:

Select property fields to edit.

Red values in *HEX View* show that values have been modified.

Press *Enter* to apply edit values and combo box selections.

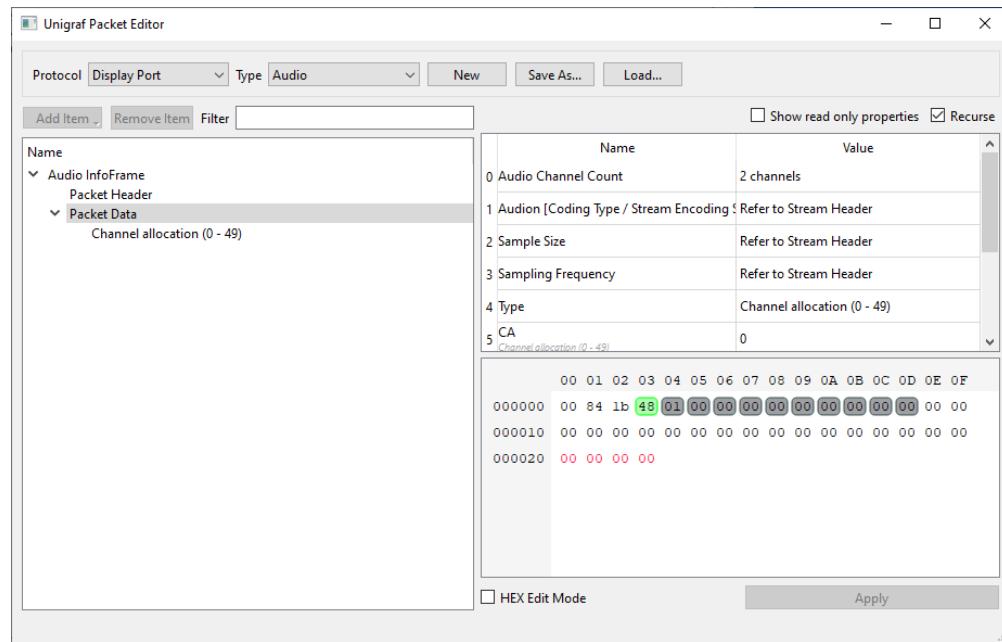
In CTA-861 blocks, you can add and remove 18-byte descriptors and CEA data blocks by setting the values “18-byte Descriptors in this block” and “CEA Data block count”.

Enter hex values with prefixes “**0x**” or “**\$**”. No prefix represents a decimal value.

Values may be entered as hexadecimal or decimal regardless of presentation.

Floating point values must have a period “.” decimal separator.

Click **Set** after changing a bit-value presented as a single checkbox if you want the new value applied.



Note: EDID Editor does not have an *Undo* function. Therefore, it is highly recommended that you back up un-edited EDID contents to a file before editing it.

10. PACKET EDITOR

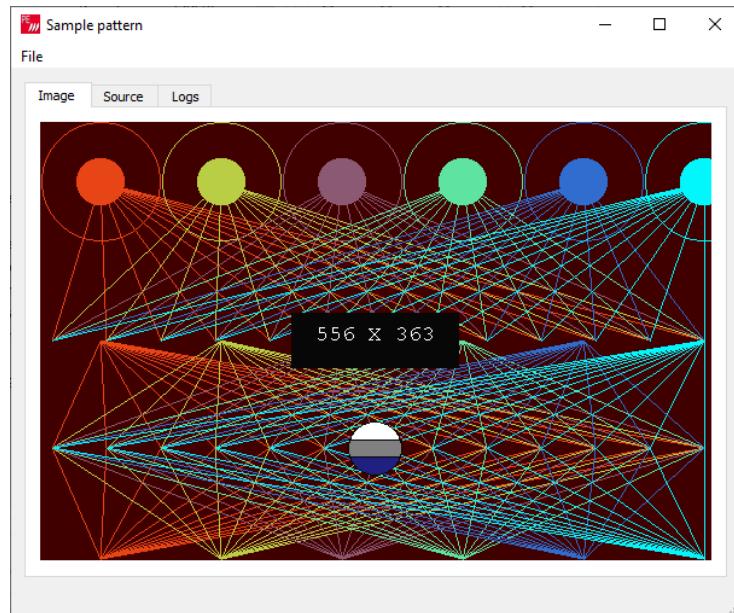
Packet Editor enables creation and editing metadata packets.

The types of supported packets are:

- Audio InfoFrame (Audio)
- AVI InfoFrame (AVI)
- Custom InfoFrame (Custom) (HDMI)
- Custom Packet (Custom) (DP)
- DR&M InfoFrame (DR&M) (HDMI)
- DR&M Packet (DR&M) (DP)
- EMP-VRR (EMP-VRR)
- GCP InfoFrame (GCP)
- SBTMEM Source-Based Tone Mapping Extended Metadata (HDMI)
- SPD InfoFrame (SPD)
- Vendor-Specific InfoFrame (VS) (HDMI)*
- Vendor-Specific SDP (VS) (DP)*

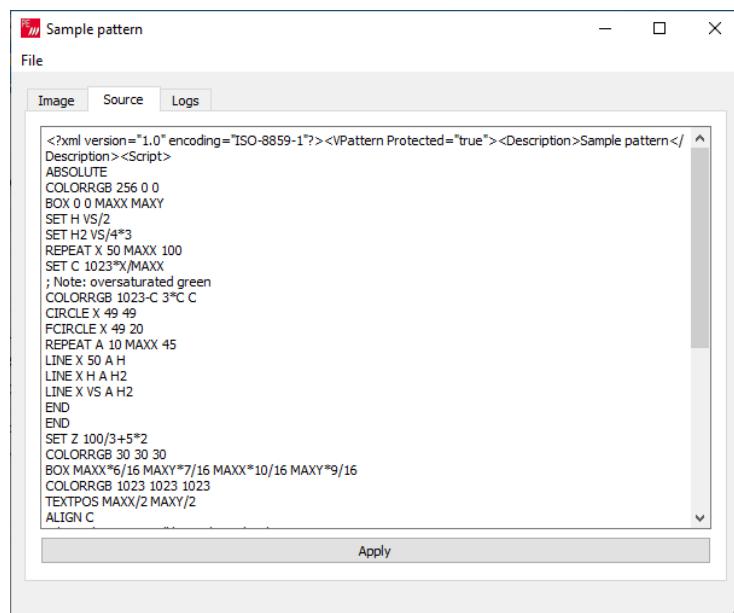
*) Please select from available VS packet types in field “4: Type” in the packet editor.

11. PATTERN EDITOR

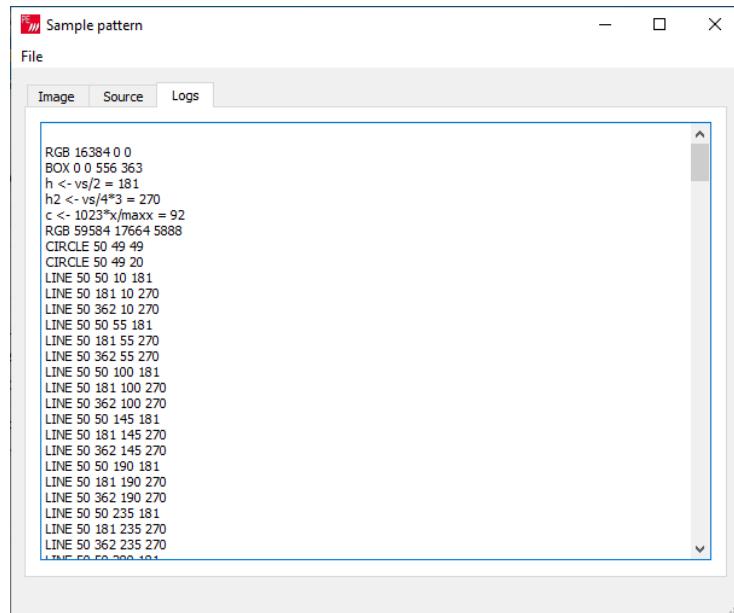

Pattern Editor is a tool for editing and debugging Unigraf Custom VTP Pattern scripts.

Please refer to APPENDIX F: VTP PATTERN LANGUAGE later in this document for description of the VTP Pattern Language syntax.

Pattern Editor consists of three tabs:


Image Tab

Monitoring the rendering of the VTP pattern script.


Source Tab

Tool for editing VTP Pattern Language script. Click Apply to render the code in the resolution of the preview image in *Image* tab.

Logs Tab

Log of the pattern code parsing indicating the values assigned to logical variables and the actual parameter values used for render instructions.

Saving and Recalling the Script

In File pull-down menu the user can save his work.

Open: Open a VTP language script from PC

Save Script: Save the script currently in Source tab to PC

Save Image: Save a rendered pattern in PNG, BMP, JPG or PPM format

Select Save Resolution: Select from six common resolutions the size in which the pattern script will be rendered when saved.

12. IMAGE CONVERTER

Image Converter is a tool for converting images from one color format to another. This kind of conversion is typically needed when creating YCbCr test images from RGB bitmaps.

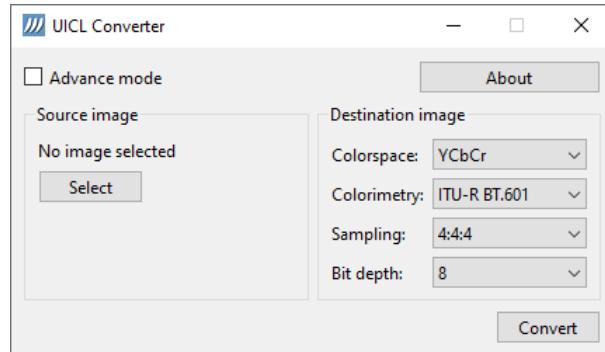
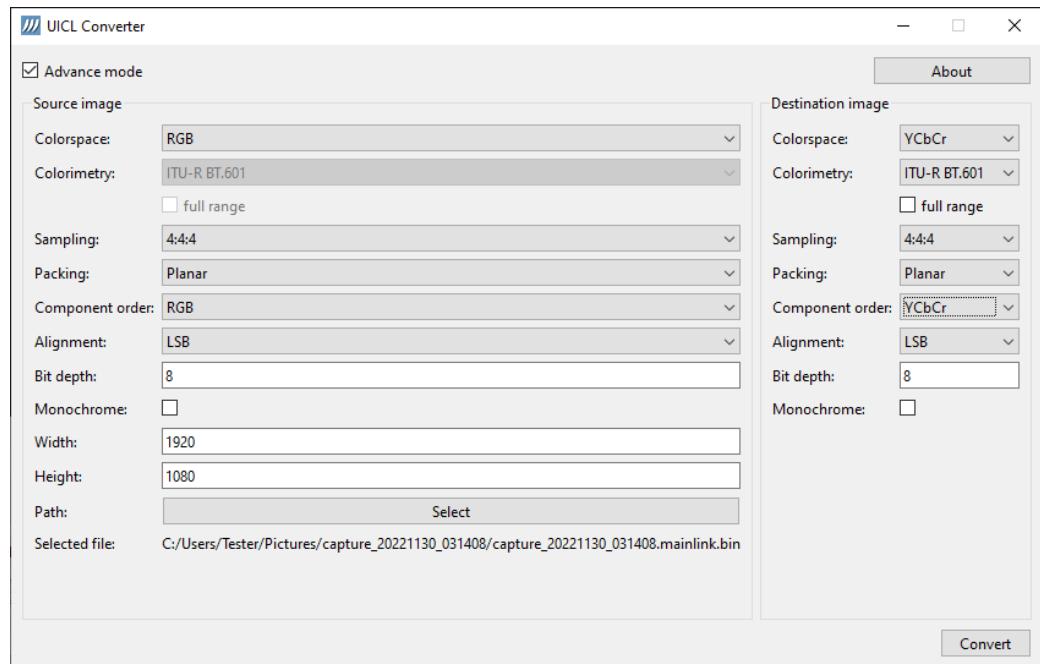



Image Converter has two operating modes: Standard mode and Advanced mode. In Standard mode typical image file formats are used as Source image and the user sets basic color formats for the Destination image. In Advanced mode, the user is able to define the Source and Destination image parameters in detail.

Click **Select** to load the Source image. Click **Convert** to store the Destination image. File name for

the Destination image is of form:

Source_image_1920x1080_8bits_yuv444_lsb.bin

Source_image	Name of the image file used as Source image
1920x1080	Resolution of the Source Image
8bits	Bit depth of the Destination image
yuv444	Color space and sampling of the Destination image
lsb	Data alignment of the Destination image

APPENDIX A: PRODUCT SPECIFICATION

UCD-422 and UCD-412

Input	HDMI 2.1 (10K@30Hz) (HDMI Rx) <i>(UCD-422 only)</i>
Output	HDMI 2.1 (10K@30Hz) (HDMI Tx)
HDMI 2.1 Features	FRL, TMDS, ALLM, VRR, QMS-VRR, SBTM
Content Protection	HDCP 2.2, HDCP 2.3
Additional features	eARC, DSC*, FEC*
Computer interface	USB 3.0
Operating System	Debian 11.0 or higher. Ubuntu 20.04.4 LTS or higher. MacOS Big Sur 11.7.10 or higher. Windows 10 10.0.19045 or higher.
Power supply	AC/DC Power supply (100 to 240 Vac 50/60 Hz input, +12 Vdc output)
Environmental	Operating temperature: 15 to 35 deg C
	Storage temperature: 0 to 50 deg C
	Humidity 30% to 70% RH, non-condensing
Mechanical Size	272 x 170 x 60 mm
Weight	1.2 kg w/o power supply

*) Please contact Unigraf for detailed availability

APPENDIX B: PRODUCT FEATURES

UCD-422 Gen2, UCD-422 and UCD-412 Features

Input / Output Role	UCD-4XX Default	HDMI 1.4 Link Analyzer	TSI Basic
HDMI Reference Sink (UCD-422 only)			
Video status, preview and saving	●		▲
Buffered capture	●		
Audio monitoring, graphical preview and saving	●		▲
Link status	●		▲
Link control	●		
HPD status and control	●		▲
EDID read and write	●		▲
EDID Editor	●		
HDCP 1.4 status and control*	●		▲
HDCP 2.3 status and control*	●		▲
FEC Feature	●		▲
DSC Decoder, DSC Control	●		
ALLM, VRR	●		▲
Event Log	●		
InfoFrame status	●		▲
Source DUT Testing	●		▲
HDMI 1.4 Link Analyzer		●	

HDMI Reference Source	UCD-4XX Default	HDMI 1.4 Link Analyzer	TSI Basic
Video pattern generator (fixed patterns and timings)	●		▲
Custom video patterns and timings	●		▲
Playback	●		▲
Audio Generator	●		▲
Link status	●		▲
Link control	●		▲
EDID read and write	●		▲
EDID Editor	●		
DSC Encoder	●		
SCDC Editor	●		
Event Log	●		
Sink DUT Testing	●		
HDCP 1.4 status and control*	●		▲
HDCP 2.3 status and control*	●		▲

Product Options

UCD-412, UCD-422, UCD-422 Gen2 Product Options

Product	P/N
HDR10+ DD and SSTM Tests for HDMI Sink DUT	MT6675
HDR10+ DD and SSTM Tests for HDMI Source DUT	MT6677
HDMI 1.4 Link Analyzer	MT6658

APPENDIX C: PREDEFINED TIMINGS

Description*	HA	VA	HT	VT	HST	VST	HSYN	VSYN	FR	Pixel Clock (MHz)
CVT 640 x 480 @ 60 Hz	640	480	800	525	144	35	96	2	60	25,20
CTA 640 x 480 @ 60 Hz (VIC 1)	640	480	800	525	144	35	96	2	60	25,17
CTA 720 x 480 @ 60 Hz (VIC 2)	720	480	858	525	122	36	62	6	60	27,03
CTA 720 x 480 @ 60 Hz (VIC 3)	720	480	858	525	122	36	62	6	60	27,00
CTA 720 x 576 @ 50 Hz (VIC 17)	720	576	864	625	132	44	64	5	50	27,00
CTA 720 x 576 @ 50 Hz (VIC 18)	720	576	864	625	132	44	64	5	50	27,00
CTA 720 x 576 @ 100 Hz (VIC 42)	720	576	864	625	132	44	64	5	100	54,00
CTA 720 x 576 @ 100 Hz (VIC 43)	720	576	864	625	132	44	64	5	100	54,00
CTA 720 x 480 @ 120 Hz (VIC 49)	720	480	858	525	122	36	62	6	120	54,00
CTA 720 x 480 @ 120 Hz (VIC 48)	720	480	858	525	122	36	62	6	120	54,05
CTA 720 x 576 @ 200 Hz (VIC 52)	720	576	864	625	132	44	64	5	200	108,00
CTA 720 x 576 @ 200 Hz (VIC 53)	720	576	864	625	132	44	64	5	200	108,00
CTA 720 x 480 @ 240 Hz (VIC 56)	720	480	858	525	122	36	62	6	240	108,00
CTA 720 x 480 @ 240 Hz (VIC 57)	720	480	858	525	122	36	62	6	240	108,00
DMT 800 x 600 @ 60 Hz (ID Eh)	800	600	1056	628	216	27	128	4	60	39,79
DMT 848 x 480 @ 60 Hz (ID 14)	848	480	1088	517	224	31	112	8	60	33,75
DMT 1024 x 768 @ 60 Hz (ID 10h)	1024	768	1344	806	296	35	136	6	60	65,00
CTA 1280 x 720 @ 50 Hz (VIC 19)	1280	720	1980	750	260	25	40	5	50	74,25
CTA 1280 x 720 @ 100 Hz (VIC 41)	1280	720	1980	750	260	25	40	5	100	148,50
CTA 1280 x 720 @ 24 Hz (VIC 60)	1280	720	3300	750	260	25	40	5	24	59,40
CTA 1280 x 720 @ 25 Hz (VIC 61)	1280	720	3960	750	260	25	40	5	25	74,25
CTA 1280 x 720 @ 30 Hz (VIC 62)	1280	720	3300	750	260	25	40	5	30	74,25
CTA 1280 x 720 @ 24 Hz (VIC 65)	1280	720	3300	750	260	25	40	5	24	59,40
CTA 1280 x 720 @ 25 Hz (VIC 66)	1280	720	3960	750	260	25	40	5	25	74,25
CTA 1280 x 720 @ 30 Hz (VIC 67)	1280	720	3300	750	260	25	40	5	30	74,25
CTA 1280 x 720 @ 50 Hz (VIC 68)	1280	720	1980	750	260	25	40	5	50	74,25
CTA 1280 x 720 @ 60 Hz (VIC 69)	1280	720	1650	750	260	25	40	5	60	74,25
CTA 1280 x 720 @ 100 Hz (VIC 70)	1280	720	1980	750	260	25	40	5	100	148,50
CTA 1280 x 720 @ 120 Hz (VIC 71)	1280	720	1650	750	260	25	40	5	120	148,50
CTA 1280 x 720 @ 48 Hz (VIC 108)	1280	720	2500	750	260	25	40	5	48	90,00
CTA 1280 x 720 @ 48 Hz (VIC 109)	1280	720	2500	750	260	25	40	5	48	90,00
CTA 1280 x 720 @ 60 Hz (VIC 4)	1280	720	1650	750	260	25	40	5	60	74,25
CTA 1280 x 720 @ 120 Hz (VIC 47)	1280	720	1650	750	260	25	40	5	120	148,50
CVT 1280 x 768 @ 60 Hz [RB1]	1280	768	1440	790	112	19	32	7	60	68,26
DMT 1280 x 768 @ 60 Hz (ID 17h)	1280	768	1664	798	320	27	128	7	60	79,67
DMT 1280 x 800 @ 60 Hz (ID 1Bh) [RB1]	1280	800	1440	823	112	20	32	6	60	71,11
DMT 1280 x 800 @ 60 Hz (ID 1Ch)	1280	800	1680	831	328	28	128	6	60	83,76
DMT 1280 x 960 @ 60 Hz (ID 20h)	1280	960	1800	1000	424	39	112	3	60	108,00
DMT 1280 x 1024 @ 60 Hz (ID 23h)	1280	1024	1688	1066	360	41	112	3	60	107,96
DMT 1360 x 768 @ 60 Hz (ID 27h)	1360	768	1792	795	368	24	112	6	60	85,48
DMT 1400 x 1050 @ 60 Hz (ID 29h) [RB1]	1400	1050	1560	1080	112	27	32	4	60	101,09
DMT 1400 x 1050 @ 60 Hz (ID 2Ah)	1400	1050	1864	1089	376	36	144	4	60	121,79

*) CVT: Coordinated Video Timings (CVT; VESA-2021-09-27 v2.0)

DMT: VESA and Industry Standards and Guidelines for Computer Display Monitor Timings

CTA: A DTV Profile for Uncompressed High Speed Digital Interfaces (CTA-861-H)

Description*	HA	VA	HT	VT	HST	VST	HSYN	VSYN	FR	Pixel Clock (MHz)
CTA 1440 x 240 @ 60 Hz (VIC 8)	1440	240	1716	263	238	18	124	3	60	27,00
CTA 1440 x 240 @ 60 Hz (VIC 9)	1440	240	1716	263	238	18	124	3	60	27,00
CTA 1440 x 480 @ 60 Hz (VIC 14)	1440	480	1716	525	244	36	124	6	60	54,00
CTA 1440 x 480 @ 60 Hz (VIC 15)	1440	480	1716	525	244	36	124	6	60	54,00
CTA 1440 x 576 @ 50 Hz (VIC 22)	1440	576	1728	625	264	22	126	3	50	54,00
CTA 1440 x 288 @ 50 Hz (VIC 23)	1440	288	1728	314	264	22	126	3	50	27,00
CTA 1440 x 288 @ 50 Hz (VIC 24)	1440	288	1728	314	264	22	126	3	50	27,00
CTA 1440 x 576 @ 50 Hz (VIC 29)	1440	576	1728	625	264	44	128	5	50	54,00
CTA 1440 x 576 @ 50 Hz (VIC 30)	1440	576	1728	625	264	44	128	5	50	54,00
CVT 1600 x 1200 @ 60 Hz [RB1]	1600	1200	1760	1235	112	32	32	4	60	130,42
DMT 1600 x 1200 @ 60 Hz (ID 33h)	1600	1200	2160	1250	496	49	192	3	60	162,00
CTA 1680 x 720 @ 24 Hz (VIC 79)	1680	720	3300	750	260	25	40	5	24	59,40
CTA 1680 x 720 @ 25 Hz (VIC 80)	1680	720	3168	750	260	25	40	5	25	59,40
CTA 1680 x 720 @ 30 Hz (VIC 81)	1680	720	2640	750	260	25	40	5	30	59,40
CTA 1680 x 720 @ 50 Hz (VIC 82)	1680	720	2200	750	260	25	40	5	50	82,50
CTA 1680 x 720 @ 100 Hz (VIC 84)	1680	720	2000	825	260	100	40	5	100	165,00
CTA 1680 x 720 @ 48 Hz (VIC 110)	1680	720	2750	750	260	25	40	5	48	99,00
CTA 1680 x 720 @ 60 Hz (VIC 83)	1680	720	2200	750	260	25	40	5	60	99,00
CTA 1680 x 720 @ 120 Hz (VIC 85)	1680	720	2000	825	260	100	40	5	120	198,00
DMT 1680 x 1050 @ 60 Hz (ID 39h) [RB1]	1680	1050	1840	1080	112	27	32	6	60	119,23
DMT 1680 x 1050 @ 60 Hz (ID 3Ah)	1680	1050	2240	1089	456	36	176	6	60	146,36
DMT 1792 x 1344 @ 60 Hz (ID 3Eh)	1792	1344	2448	1394	528	49	200	3	60	204,75
DMT 1856 x 1392 @ 60 Hz (ID 41h)	1856	1392	2528	1439	576	46	224	3	60	218,27
CTA 1920 x 1080 @ 50 Hz (VIC 31)	1920	1080	2640	1125	192	41	44	5	50	148,50
CTA 1920 x 1080 @ 24 Hz (VIC 32)	1920	1080	2750	1125	192	41	44	5	24	74,25
CTA 1920 x 1080 @ 25 Hz (VIC 33)	1920	1080	2640	1125	192	41	44	5	25	74,25
CTA 1920 x 1080 @ 100 Hz (VIC 64)	1920	1080	2640	1125	192	41	44	5	100	297,00
CTA 1920 x 1080 @ 24 Hz (VIC 72)	1920	1080	2750	1125	192	41	44	5	24	74,25
CTA 1920 x 1080 @ 25 Hz (VIC 73)	1920	1080	2640	1125	192	41	44	5	25	74,25
CTA 1920 x 1080 @ 30 Hz (VIC 74)	1920	1080	2200	1125	192	41	44	5	30	74,25
CTA 1920 x 1080 @ 50 Hz (VIC 75)	1920	1080	2640	1125	192	41	44	5	50	148,50
CTA 1920 x 1080 @ 60 Hz (VIC 76)	1920	1080	2200	1125	192	41	44	5	60	148,50
CTA 1920 x 1080 @ 100 Hz (VIC 77)	1920	1080	2640	1125	192	41	44	5	100	297,00
CTA 1920 x 1080 @ 120 Hz (VIC 78)	1920	1080	2200	1125	192	41	44	5	120	297,00
CVT 1920 x 1080 @ 30 Hz [RB1]	1920	1080	2080	1096	112	13	32	5	30	68,39
CVT 1920 x 1080 @ 30 Hz [RB2]	1920	1080	2000	1096	72	14	32	8	30	65,76
CVT 1920 x 1080 @ 144 Hz [RB3]	1920	1080	2080	1157	152	14	32	8	144	346,66
CVT 1920 x 1080 @ 200 Hz [RB3]	1920	1080	2080	1190	152	14	32	8	200	495,21
CTA 1920 x 1080 @ 30 Hz (VIC 34)	1920	1080	2200	1125	192	41	44	5	30	74,25
CVT 1920 x 1080 @ 60 Hz [RB1]	1920	1080	2080	1111	112	28	32	5	60	138,65
CVT 1920 x 1080 @ 60 Hz	1920	1080	2000	1111	72	14	32	8	60	133,32
DMT 1920 x 1080 @ 60 Hz (ID 52h)	1920	1080	2200	1125	192	41	44	5	60	148,50
CTA 1920 x 1080 @ 60 Hz (VIC 16)	1920	1080	2200	1125	192	41	44	5	60	148,50
CVT 1920 x 1080 @ 120 Hz [RB1]	1920	1080	2080	1144	112	61	32	5	120	285,54
CVT 1920 x 1080 @ 120 Hz [RB2]	1920	1080	2000	1144	72	14	32	8	120	274,56
CTA 1920 x 1080 @ 120 Hz (VIC 63)	1920	1080	2200	1125	192	41	44	5	120	297,00

*) CVT: Coordinated Video Timings (CVT; VESA-2021-09-27 v2.0)

DMT: VESA and Industry Standards and Guidelines for Computer Display Monitor Timings

CTA: A DTV Profile for Uncompressed High Speed Digital Interfaces (CTA-861-H)

Description*	HA	VA	HT	VT	HST	VST	HSYN	VSYN	FR	Pixel Clock (MHz)
CTA 1920 x 1080 @ 48 Hz (VIC 111)	1920	1080	2750	1125	192	41	44	5	48	148,50
CTA 1920 x 1080 @ 48 Hz (VIC 112)	1920	1080	2750	1125	192	41	44	5	48	148,50
DMT 1920 x 1200 @ 60 Hz (ID 45h)	1920	1200	2592	1245	536	42	200	6	60	193,62
DMT 1920 x 1440 @ 60 Hz (ID 49h)	1920	1440	2600	1500	552	59	208	3	60	234,00
CVT 2048 x 1536 @ 60 Hz [RB1]	2048	1536	2208	1580	112	41	32	4	60	209,32
CTA 2560 x 1080 @ 24 Hz (VIC 86)	2560	1080	3750	1100	192	16	44	5	24	99,00
CTA 2560 x 1080 @ 25 Hz (VIC 87)	2560	1080	3200	1125	192	41	44	5	25	90,00
CTA 2560 x 1080 @ 30 Hz (VIC 88)	2560	1080	3520	1125	192	41	44	5	30	118,80
CTA 2560 x 1080 @ 50 Hz (VIC 89)	2560	1080	3300	1125	192	41	44	5	50	185,63
CTA 2560 x 1080 @ 100 Hz (VIC 91)	2560	1080	2970	1250	192	166	44	5	100	371,25
CVT 2560 x 1440 @ 60 Hz [RB2]	2560	1440	2640	1481	72	14	32	8	60	234,59
CVT 2560 x 1440 @ 60 Hz [RB1]	2560	1440	2720	1481	112	38	32	5	60	241,70
CVT 2560 x 1440 @ 144 Hz [RB3]	2560	1440	2720	1543	152	14	32	8	144	604,57
CVT 2560 x 1440 @ 200 Hz [RB3]	2560	1440	2720	1586	152	14	32	8	200	863,09
CTA 2560 x 1080 @ 48 Hz (VIC 113)	2560	1080	3750	1100	192	16	44	5	48	198,00
CVT 2560 x 1080 @ 60 Hz	2560	1080	3424	1120	704	37	272	10	60	230,09
CVT 2560 x 1080 @ 60 Hz [RB1]	2560	1080	2720	1111	112	28	32	10	60	181,32
CVT 2560 x 1080 @ 144 Hz [RB3]	2560	1080	2720	1157	152	14	32	8	144	453,33
CVT 2560 x 1080 @ 200 Hz [RB3]	2560	1080	2720	1190	152	14	32	8	200	647,59
CTA 2560 x 1080 @ 60 Hz (VIC 90)	2560	1080	3000	1100	192	16	44	5	60	198,00
CTA 2560 x 1080 @ 120 Hz (VIC 92)	2560	1080	3300	1250	192	16	44	5	120	495,00
DMT 2560 x 1600 @ 60 Hz (ID 4Dh)	2560	1600	3504	1658	752	55	280	6	60	348,58
DMT 2560 x 1600 @ 60 Hz (ID 4Ch) [RB1]	2560	1600	2720	1646	112	43	32	6	60	268,63
CTA 2880 x 240 @ 60 Hz (VIC 12)	2880	240	3432	263	476	18	248	3	60	54,00
CTA 2880 x 240 @ 60 Hz (VIC 13)	2880	240	3432	263	476	18	248	3	60	54,00
CTA 2880 x 288 @ 50 Hz (VIC 27)	2880	288	3456	314	528	22	252	3	50	54,00
CTA 2880 x 288 @ 50 Hz (VIC 28)	2880	288	3456	314	528	22	252	3	50	54,00
CTA 2880 x 480 @ 60 Hz (VIC 35)	2880	480	3432	525	488	36	248	6	60	108,00
CTA 2880 x 480 @ 60 Hz (VIC 36)	2880	480	3432	525	488	36	248	6	60	108,00
CTA 2880 x 576 @ 50 Hz (VIC 37)	2880	576	3456	625	528	44	256	5	50	108,00
CTA 2880 x 576 @ 50 Hz (VIC 38)	2880	576	3456	625	528	44	256	5	50	108,00
2880 x 1440 @ 60 Hz	2880	1440	2976	1456	48	8	8	1	60	259,98
CVT 3440 x 1440 @ 60 Hz	3440	1440	4688	1493	992	50	368	10	60	419,951
CVT 3440 x 1440 @ 60 Hz [RB1]	3440	1440	3600	1481	112	38	32	10	60	319,896
CVT 3440 x 1440 @ 60 Hz [RB2]	3440	1440	3520	1481	72	14	32	8	60	312,787
CVT 3440 x 1440 @ 120 Hz	3440	1440	4800	1545	1064	102	384	10	120	889,92
CVT 3440 x 1440 @ 120 Hz [RB1]	3440	1440	3600	1525	112	82	32	10	120	658,80
CVT 3440 x 1440 @ 120 Hz [RB2]	3440	1440	3520	1525	72	14	32	8	120	644,16
CVT 3440 x 1440 @ 165 Hz	3440	1440	4832	1588	1080	145	384	10	165	1266,081
CVT 3440 x 1440 @ 165 Hz [RB1]	3440	1440	3600	1559	112	116	32	10	165	926,046
CVT 3440 x 1440 @ 165 Hz [RB2]	3440	1440	3520	1559	72	14	32	8	165	905,467
CVT 3440 x 1440 @ 200 Hz	3440	1440	4848	1622	1088	179	384	10	200	1572,691
CVT 3440 x 1440 @ 200 Hz [RB1]	3440	1440	3600	1586	112	143	32	10	200	1141,92
CVT 3440 x 1440 @ 200 Hz [RB2]	3440	1440	3520	1586	72	14	32	8	200	1116,544
CVT 3440 x 1440 @ 240 Hz	3440	1440	4848	1663	1088	220	384	10	240	1934,934
CVT 3440 x 1440 @ 240 Hz [RB1]	3440	1440	3600	1619	112	176	32	10	240	1398,816
CVT 3440 x 1440 @ 240 Hz [RB2]	3440	1440	3520	1619	72	14	32	8	240	1367,731
CVT 3840 x 2160 @ 30 Hz [RB1]	3840	2160	4000	2191	112	28	32	5	30	262,92
CVT 3840 x 2160 @ 30 Hz [RB2]	3840	2160	3920	2191	72	14	32	8	30	257,66
CVT 3840 x 2160 @ 60 Hz [RB1]	3840	2160	4000	2222	112	59	32	5	60	533,28
CVT 3840 x 2160 @ 60 Hz [RB2]	3840	2160	3920	2222	72	14	32	8	60	522,61

CVT 3840 x 2160 @ 60 Hz [RB3]	3840	2160	4000	2222	152	14	32	8	60	533,47
CTA 3840 x 2160 @ 60 Hz (VIC 97)	3840	2160	4400	2250	384	82	88	10	60	594,00
CTA 3840 x 2160 @ 24 Hz (VIC 93)	3840	2160	5500	2250	384	82	88	10	24	297,00
CTA 3840 x 2160 @ 25 Hz (VIC 94)	3840	2160	5280	2250	384	82	88	10	25	297,00
CTA 3840 x 2160 @ 30 Hz (VIC 95)	3840	2160	4400	2250	384	82	88	10	30	297,00
CTA 3840 x 2160 @ 50 Hz (VIC 96)	3840	2160	5280	2250	384	82	88	10	50	594,00
CTA 3840 x 2160 @ 24 Hz (VIC 103)	3840	2160	5500	2250	384	82	88	10	24	297,00
CTA 3840 x 2160 @ 25 Hz (VIC 104)	3840	2160	5280	2250	384	82	88	10	25	297,00
CTA 3840 x 2160 @ 30 Hz (VIC 105)	3840	2160	4400	2250	384	82	88	10	30	297,00

*) CVT: Coordinated Video Timings (CVT; VESA-2021-09-27 v2.0)

DMT: VESA and Industry Standards and Guidelines for Computer Display Monitor Timings

CTA: A DTV Profile for Uncompressed High Speed Digital Interfaces (CTA-861-H)

Description*	HA	VA	HT	VT	HST	VST	HSYN	VSYN	FR	Pixel Clock (MHz)
CTA 3840 x 2160 @ 50 Hz (VIC 106)	3840	2160	5280	2250	384	82	88	10	50	594,00
CTA 3840 x 2160 @ 60 Hz (VIC 107)	3840	2160	4400	2250	384	82	88	10	60	594,00
CTA 3840 x 2160 @ 48 Hz (VIC 114)	3840	2160	5500	2250	384	82	88	10	48	594,00
CTA 3840 x 2160 @ 48 Hz (VIC 116)	3840	2160	5500	2250	384	82	88	10	48	594,00
CTA 3840 x 2160 @ 100 Hz (VIC 117)	3840	2160	5280	2250	384	82	88	10	100	1188,00
CTA 3840 x 2160 @ 100 Hz (VIC 119)	3840	2160	5280	2250	384	82	88	10	100	1188,00
CTA 3840 x 2160 @ 120 Hz (VIC 120)	3840	2160	4400	2250	384	82	88	10	120	1188,00
CVT 4096 x 2160 @ 60 Hz [RB2]	4096	2160	4176	2222	72	14	32	8	60	556,74
CVT 4096 x 2160 @ 60 Hz [RB1]	4096	2160	4256	2222	112	59	32	10	60	567,41
CVT 4096 x 2160 @ 60 Hz [RB3]	4096	2160	4256	2222	152	14	32	8	60	567,61
CTA 4096 x 2160 @ 60 Hz (VIC 102)	4096	2160	4400	2250	216	82	88	10	60	594,00
CTA 4096 x 2160 @ 120 Hz (VIC 219)	4096	2160	4400	2250	216	82	88	10	120	1188,00
CTA 4096 x 2160 @ 100 Hz (VIC 218)	4096	2160	5280	2250	384	82	88	10	100	1188,00
CTA 4096 x 2160 @ 50 Hz (VIC 101)	4096	2160	5280	2250	216	82	88	10	50	594,00
CTA 4096 x 2160 @ 48 Hz (VIC 115)	4096	2160	5500	2250	384	82	88	10	48	594,00
CTA 4096 x 2160 @ 24 Hz (VIC 98)	4096	2160	5500	2250	384	82	88	10	24	297,00
CTA 4096 x 2160 @ 25 Hz (VIC 99)	4096	2160	5280	2250	216	82	88	10	25	297,00
CTA 4096 x 2160 @ 30 Hz (VIC 100)	4096	2160	4400	2250	216	82	88	10	30	297,00
CVT 3840 x 2160 @ 120 Hz [RB1]	3840	2160	4000	2287	112	124	32	5	120	1097,76
CVT 3840 x 2160 @ 120 Hz [RB2]	3840	2160	3920	2287	72	14	32	8	120	1075,80
CTA 3840 x 2160 @ 120 Hz (VIC 118)	3840	2160	4400	2250	384	82	88	10	120	1188,00
CVT 5120 x 2160 @ 30 Hz [RB1]	5120	2160	5280	2191	112	28	32	10	30	347,05
CVT 5120 x 2160 @ 30 Hz [RB2]	5120	2160	5200	2191	72	14	32	8	30	341,80
CTA 5120 x 2160 @ 30 Hz (VIC 123)	5120	2160	6000	2200	216	32	88	10	30	396,00
CVT 5120 x 2160 @ 60 Hz [RB1]	5120	2160	5280	2222	112	59	32	10	60	703,93
CVT 5120 x 2160 @ 60 Hz [RB2]	5120	2160	5200	2222	72	14	32	6	60	693,26
CTA 5120 x 2160 @ 60 Hz (VIC 126)	5120	2160	5500	2250	216	82	88	10	60	742,50
5120 x 2880 @ 60 Hz	5120	2880	5280	2962	112	79	32	5	60	938,36
5120 x 2880 @ 60 Hz	5120	2880	5200	2962	72	14	32	8	60	924,14
5120 x 2880 @ 60 Hz	5120	2880	5280	2962	152	14	32	8	60	938,69
CTA 5120 x 2160 @ 48 Hz (VIC 124)	5120	2160	6250	2475	384	307	88	10	48	742,50
CTA 5120 x 2160 @ 50 Hz (VIC 125)	5120	2160	6600	2250	384	82	88	10	50	742,50
CTA 5120 x 2160 @ 100 Hz (VIC 127)	5120	2160	6600	2250	384	82	88	10	100	1485,00
CTA 5120 x 2160 @ 25 Hz (VIC 122)	5120	2160	7200	2200	384	32	88	10	25	396,00
CTA 5120 x 2160 @ 24 Hz (VIC 121)	5120	2160	7500	2200	384	32	88	10	24	396,00
CVT 7680 x 4320 @ 30 Hz [RB2]	7680	4320	7760	4381	72	14	32	8	30	1019,90

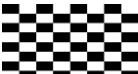
CVT 7680 x 4320 @ 30 Hz [RB1]	7680	4320	7840	4381	112	58	32	5	30	1030,41
CVT 7680 x 4320 @ 60 Hz [RB2]	7680	4320	7760	4443	72	14	32	8	60	2068,66
CVT 7680 x 4320 @ 100 Hz [RB2]	7680	4320	7760	4529	72	14	32	8	100	3514,50
CVT 7680 x 4320 @ 60 Hz [RB1]	7680	4320	7840	4443	112	120	32	5	60	2089,99
CVT 7680 x 4320 @ 100 Hz [RB1]	7680	4320	7840	4529	112	206	32	5	100	3550,74
CTA 7680 x 4320 @ 120 Hz (VIC 201)	7680	4320	8800	4500	768	164	176	20	120	4752,00
CTA 7680 x 4320 @ 120 Hz (VIC 209)	7680	4320	8800	4500	768	164	176	20	120	4752,00
CTA 7680 x 4320 @ 30 Hz (VIC 204)	7680	4320	9000	4400	768	64	176	20	30	1188,00
CTA 7680 x 4320 @ 30 Hz (VIC 196)	7680	4320	9000	4400	768	64	176	20	30	1188,00
CTA 7680 x 4320 @ 60 Hz (VIC 207)	7680	4320	9000	4400	768	64	176	20	60	2376,00
CTA 7680 x 4320 @ 60Hz (VIC 199)	7680	4320	9000	4400	768	64	176	20	60	2376,00

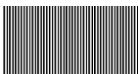
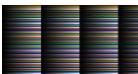
*) CVT: Coordinated Video Timings (CVT; VESA-2021-09-27 v2.0)

DMT: VESA and Industry Standards and Guidelines for Computer Display Monitor Timings

CTA: A DTV Profile for Uncompressed High Speed Digital Interfaces (CTA-861-H)

Description*	HA	VA	HT	VT	HST	VST	HSYN	VSYN	FR	Pixel Clock (MHz)
CTA 7680 x 4320 @ 100 Hz (VIC 208)	7680	4320	10560	4500	768	164	176	20	100	4752,00
CTA 7680 x 4320 @ 100 Hz (VIC 200)	7680	4320	10560	4500	768	164	176	20	100	4752,00
CTA 7680 x 4320 @ 25 Hz (VIC 203)	7680	4320	10800	4400	768	64	176	20	25	1188,00
CTA 7680 x 4320 @ 25 Hz (VIC 195)	7680	4320	10800	4400	768	64	176	20	25	1188,00
CTA 7680 x 4320 @ 50 Hz (VIC 198)	7680	4320	10800	4400	768	64	176	20	50	2376,00
CTA 7680 x 4320 @ 50 Hz (VIC 206)	7680	4320	10800	4400	768	64	176	20	50	2376,00
CTA 7680 x 4320 @ 24 Hz (VIC 194)	7680	4320	11000	4500	768	164	176	20	24	1188,00
CTA 7680 x 4320 @ 48 Hz (VIC 197)	7680	4320	11000	4500	768	164	176	20	48	2376,00
CTA 7680 x 4320 @ 24 Hz (VIC 202)	7680	4320	11000	4500	768	164	176	20	24	1188,00
CTA 7680 x 4320 @ 48 Hz (VIC 205)	7680	4320	11000	4500	768	164	176	20	48	2376,00
Unigraf 10240 x 4320 @ 30 Hz [RB1]	10240	4320	11000	4500	112	58	32	5	30	1485,00
Unigraf 10240 x 4320 @ 30 Hz [RB2]	10240	4320	11000	4500	72	14	32	8	30	1485,00
CTA 10240 x 4320 @ 24 Hz (VIC 210)	10240	4320	12500	4950	768	614	176	20	24	1485,00
CTA 10240 x 4320 @ 25 Hz (VIC 211)	10240	4320	13500	4400	768	64	176	20	25	1485,00
CTA 10240 x 4320 @ 30 Hz (VIC 212)	10240	4320	11000	4500	472	164	176	20	30	1485,00
CTA 10240 x 4320 @ 48 Hz (VIC 213)	10240	4320	12500	4950	768	614	176	20	48	2970,00
CTA 10240 x 4320 @ 50 Hz (VIC 214)	10240	4320	13500	4400	768	64	176	20	50	2970,00
CTA 10240 x 4320 @ 60 Hz (VIC 215)	10240	4320	11000	4500	472	164	176	20	60	2970,00
CTA 10240 x 4320 @ 100 Hz (VIC 216)	10240	4320	13200	4500	768	164	176	20	100	5940,00
CTA 10240 x 4320 @ 120 Hz (VIC 217)	10240	4320	11000	4500	472	164	176	20	120	5940,00





*) CVT: Coordinated Video Timings (CVT; VESA-2021-09-27 v2.0)

DMT: VESA and Industry Standards and Guidelines for Computer Display Monitor Timings

CTA: A DTV Profile for Uncompressed High Speed Digital Interfaces (CTA-861-H)

APPENDIX D: PREDEFINED PATTERNS

Fixed Patterns

Selection	Pattern	Description
Disabled		The links are activated but no video data transferred
Color Bar		100% intensity color bars of all primaries and mixed combinations.
Chessboard		8 by 8 chessboard with black (0%) and 100% intensity white
Solid Color		Solid color. User selected RGB values
Solid White		100% white
Solid Red		100% red
Solid Green		100% green
Solid Blue		100% blue
White V-Strips		Vertical stripes of black (0%) and white (100%). Parameters set the widths of the black and white stripes in pixels respectively. Default black / white = 20 / 20 pixels. Parameter range 1 to 1000.
RGB Wide Strips		16 pixels high horizontal red, green, blue and white stripes. Intensity is increased from 0 to 100% with steps defined by the given parameter (Color Step = cs) and selected color. (step = cs*color_depth/256). "n" range 0 to 5000 (default 100).
Color Ramp		Color Ramp test pattern defined by VESA DisplayPort Link Layer Compliance Test Specification.
Color Square		Color Square test pattern defined by VESA DisplayPort Link Layer Compliance Test Specification. Color mode can be selected between RGB, YCbCr 4:4:4, 4:2:2, 4:2:0 (ITU Rec 601 / 709)
Motion Pattern		Horizontally moving color bar pattern. The pattern is shifted to left one pixel in each frame in a sequence. The length of the sequence is defined with parameter. Range 0 to 34 (default is 20)
Square Window		100% intensity white square horizontally and vertically centered. Height and width defined by parameter as the percentage of height and width of the frame (default 30).

Extended Patterns

Selection	Icon	Description
Select Image		Custom image uploaded by the user. Click on Select ... to browse.
Select DSC Image		Custom DSC compressed image file uploaded by the user. Click on Select ... to browse.
Unigraf PM5544		Vpattern vector pattern based on PM5544
Color Web		Vpattern vector pattern.
Chinese Town Full HD		JPG Bitmap image (1920 x 1080 px)
UG-2111 HLG Narrow		Software generated pattern. HLG Narrow dynamic range.
UG-2111 PQ Narrow		Software generated pattern. PQ Narrow dynamic range.
UG-2111 PQ Full		Software generated pattern. PQ Full dynamic range.
Multi		Vpattern vector pattern. Multi-purpose pattern w square grid, cross-grids, 1x1 cross-hatches, circles, and color bars
SMPTE RP-133		Vpattern vector pattern based on SMPTE RP-133
SMPTE 303M		Vpattern vector pattern. SMPTE 303M; Full Range; RGB values before gamma correction based on D65 and PAL primaries
Blue		Vpattern vector pattern. 100% Blue
CirclesW		Vpattern vector pattern. Concentric circles
Complex		Vpattern vector pattern. Complex Pattern w 64 steps
Green		Vpattern vector pattern. 100% Green
Hor1W-Even		Vpattern vector pattern. Horizontal 1 px wide White bars in even rows
Hor1W-Odd		Vpattern vector pattern. Horizontal 1 px wide White bars in odd rows
Hor4W		Vpattern vector pattern. Horizontal 4 px high White bars
Hor10W		Vpattern vector pattern. Horizontal 10 px high White bars
Hor-10xB		Vpattern vector pattern. 10 pcs horizontal Blue bars
Hor-10G		Vpattern vector pattern. 10 pcs horizontal Green bars

Extended Patterns (cont.)

Selection	Icon	Description
Hor-10xR		Vpattern vector pattern. 10 pcs horizontal Red bars
Hor-10xW		Vpattern vector pattern. 10 pcs horizontal White bars
HorRainbow-1024		Vpattern vector pattern. Horizontal Rainbow Ramps 1024 steps
HorRGBW-1024		Vpattern vector pattern. Horizontal RGBW Ramps 1024 steps
HorScale9		Vpattern vector pattern. Nine Horizontal Color Ramps
HorScaleW-64		Vpattern vector pattern. Horizontal White ramp 64 steps
HorScaleW-128		Vpattern vector pattern. Horizontal White ramp 128 steps
HorScaleW-X2		Vpattern vector pattern. Horizontal White ramp w edges 128 steps
InnerBox-BKtoB		Vpattern vector pattern. InnerBox pattern from Black to Blue
InnerBox-BKtoG		Vpattern vector pattern. InnerBox pattern from Black to Green
InnerBox-BKtoR		Vpattern vector pattern. InnerBox pattern from Black to Red
InnerBox-BKtoW		Vpattern vector pattern. InnerBox pattern from Black to White
InnerBoxMIX		Vpattern vector pattern. InnerBox pattern mixed hues.
InnerBox-RtoB		Vpattern vector pattern. InnerBox pattern from Red to Blue
Red		Vpattern vector pattern. 100% Red
Ver1W-Even		Vpattern vector pattern. Vertical 1 px wide White bars in even columns
Ver1W-Odd		Vpattern vector pattern. Vertical 1 px wide White bars in odd columns
Ver4W		Vpattern vector pattern. Vertical 4 px wide White bars
Ver10W		Vpattern vector pattern. Vertical 10 px wide White bars
Ver-10xG		Vpattern vector pattern. 10 pcs Vertical Blue bars
Ver-10xR		Vpattern vector pattern. 10 pcs Vertical Blue bars
Ver-10xB		Vpattern vector pattern. 10 pcs Vertical Blue bars
Ver-10xW		Vpattern vector pattern. 10 pcs Vertical Blue bars

Extended Patterns (cont.)

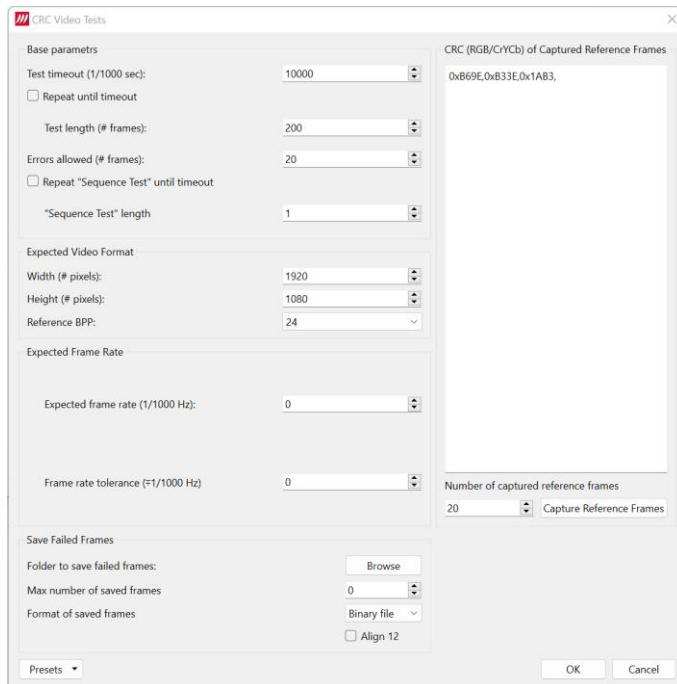
Selection	Icon	Description
VerBars75%		Vpattern vector pattern. Vertical 75% intensity Color bars
VerBars100%		Vpattern vector pattern. Vertical 100% intensity Color bars
VerRGBW-1024		Vpattern vector pattern. Vertical RGBW Ramps 1024 steps
X-HatchBK-C		Vpattern vector pattern. Black 16 x12 Grid w Circle on White background
X-HatchW		Vpattern vector pattern. White 16 x12 Grid on Black background
X-HatchW-C		Vpattern vector pattern. White 16 x12 Grid w Circle on Black background
X-HatchW-CC		Vpattern vector pattern. White 16 x12 Grid w Ellipses, Circle and 100% color bars
Gray Box 10		Vpattern vector pattern. China 5.6 White Window 10%
Gray Box 20		Vpattern vector pattern. China 5.6 White Window 20%
Gray Box 30		Vpattern vector pattern. China 5.6 White Window 30%
Gray Box 40		Vpattern vector pattern. China 5.6 White Window 40%
Gray Box 50		Vpattern vector pattern. China 5.6 White Window 50%
Gray Box 60		Vpattern vector pattern. China 5.6 White Window 60%
Gray Box 70		Vpattern vector pattern. China 5.6 White Window 70%
Gray Box 80		Vpattern vector pattern. China 5.6 White Window 80%
Gray Box 90		Vpattern vector pattern. China 5.6 White Window 90%
Gray Box 100		Vpattern vector pattern. China 5.6 White Window 100%
8 Level Gray		Vpattern vector pattern. China 5.5 Ultimate 8 Level Grayscale

Extended Patterns (cont.)

Selection	Icon	Description
Black'n'White Window HDTV		Vpattern vector pattern. China 5.8 Black and White Window(FOR HDTV)
Black'n'White Window SDTV		Vpattern vector pattern. China 5.8 Black and White Window(FOR SDTV)
Black Line HDTV		Vpattern vector pattern. China 5.10 Black Line HDTV
Black Line SDTV		Vpattern vector pattern. China 5.10 Black Line SDTV
Black Window		Vpattern vector pattern. China 5.7 Black Window
Check Board		Vpattern vector pattern. China 5.9 Check Board
Line'n'Window		Vpattern vector pattern. China 5.11 Line and Window
Narrow White Window		Vpattern vector pattern. China 5.19 Narrow White Window
Single Dot		Vpattern vector pattern. China Single Dot
White Line HDTV		Vpattern vector pattern. China 5.10 White Line for HDTV
White Line SDTV		Vpattern vector pattern. China 5.10 White Line for SDTV

More test patterns can be downloaded e.g. from www.icdm-sid.org/

APPENDIX E: SINK, SOURCE AND REPEATER TESTS


Source DUT Testing		Default	HDCP 2.3 CTS*	HDR10+ Distribution Device Tests
Audio Test	Validate audio signal frequency and glitch-free audio reproduction	●		
CEC Functional Test Set	CEC functional test, CEC PHY Addr test, CEC Complete test, CEC Wake up test, CEC Standby test	●		
CRC Video Tests	CRC based single frame reference video test, CRC based single frame stability test, CRC based sequence of frames reference video test, CRC based continuous sequence of frames reference video test	●		
Pixel Level Video Tests	Compare video frame sequence with a single reference	●		
VRR Source DUT Tests (HDMI)	VRR static test, QMS Test, VRR Dynamic test	●		
HDR10+ Distribution Device Tests	Tests from: <i>HDR10+ TEST SPECIFICATION, HDR10+ Distribution Device</i>			●
HDR10+ SSTM Tests for Source	Tests from: <i>HDR10+ TEST SPECIFICATION, Source Side Tone Mapping for Source Device</i>			●

Sink DUT Testing		Default	HDR10+ DD & SSTM CTS
VRR Sink DUT Tests	VRR static test, QMS Test, VRR Dynamic test	●	
HDR10+ CTS Tests	HDR10+ Display Device and SSTM Tests		●
Cable test	Cable Test Check	●	
Connection test	Connection test	●	

CRC Video Tests – HDMI Rx

Role:	Product:
HDMI Reference Sink (HDMI RX)	UCD-422

Configuration

<i>Test timeout:</i>	If enabled test will abort when the time has elapsed
<i>Repeat until timeout:</i>	Omit "Test length" parameter
<i>Test length (# frames):</i>	Number of captured frames to test
<i>Errors allowed (# frames):</i>	Number of failing frames allowed before test Fails
<i>Repeat "Sequence Test" until timeout:</i>	Repeat test sequence until the timeout set (length parameter below omitted)
<i>"Sequence Test" length</i>	Repeat count of the "Sequence Test"
<i>Expected Video Format</i>	Format of the signal expected
<i>Expected Frame Rate:</i>	Verify stability of the video signal. Verification disabled if Expected Frame Rate is set to "0"
<i>Number of captured reference frames:</i>	Number of frames stored as reference
<i>Capture Reference Frames:</i>	Capture reference frames for the test
<i>Folder to save failed frames:</i>	PC folder where failed frames are stored.
<i>Max number of saved frames:</i>	Maximum number of failed frames stored to PC
<i>Format of saved frames:</i>	Select saved image format (Binary file, PPM image, BMP image)
<i>Align 12</i>	12bpc values are be shifted to MSB of a 16bits container. If not checked, 12 LSB are used to store colour component values.
<i>Presets:</i>	Store and recall settings

CRC Based Single Reference Frame Video Test

The test compares captured frames to a captured reference. In Configure dialog, please select 1 to *CRC Capture length* and click *Capture Now*.

TE compares the video mode (Frame Width, Height, BPP and optionally Frame rate) to provided parameters and after that captures frames and compares the CRC (check sum) of their three color components to the provided reference until the number of bad frame limit provided is detected or the provided total number of frames is reached.

The test is judged FAIL if video mode does not match, or the number of bad frames is exceeded.

The test optionally captures the failed frames as bitmap images and stores them into the hard disc.

Parameters in use

- Test Timeout (default 10 000 ms)
- Total number of frames (default 2 00 ms)
- Number of bad frames allowed (default 20)
- Reference width (default 1920)
- Reference height (default 1080)
- Reference BPP (default 24)
- Expected frame rate (mHz, 1/1000 Hz)
- Frame rate tolerance (mHz, 1/1000 Hz)
- Reference CRCs (R, G, B)

CRC Based Single Frame Video Stability Test

The test verifies that the captured video is stable.

TE captures a frame and sets the CRC of its color components as reference. After that TE captures frames and compares their CRC (check sum) to the reference until the number of bad frame limit provided is detected or the provided total number of frames is reached.

The test is judged FAIL if the number of bad frames is exceeded.

The test optionally captures the failed frames as bitmap images and stores them into the hard disc.

Parameters in use

- Test Timeout (default 100 00 ms)
- Total number of frames (default 200 ms)
- Number of bad frames allowed (default 20)

CRC Based Sequence of Reference Frames Test

The verifies that a sequence of frames is captured in the right order.

TE compares the video mode (frame Width, Height, BPP and optionally Frame rate) to provided parameters. After that captures frames to find a frame with matching CRC (check sum) of their three color components to the first provided reference. After the first matching CRC is found it compares the CRC of the following frames until the Number of frames tested parameter is reached.

The test is judged FAIL if video mode does not match, the first frame in the list is not found or the CRC of the following frames do not match the provided list.

The test optionally captures the failed frames as bitmap images and stores them into the hard disc.

Parameters in use

- Test Timeout (default 10 000 ms)
- Number of frames to be tested (default 20)
- Reference width (default 1920)
- Reference height (default 1080)
- Reference BPP (default 24)
- Expected frame rate (mHz, 1/1000 Hz)
- Frame rate tolerance (mHz, 1/1000 Hz)
- Reference CRCs (R, G, B)

Note: Please note that in order for the TE to maintain the sequence, all CRCs in the reference frame list should be different.

CRC Based Continuous Sequence of Reference Frames Test

The test verifies that a sequence of frames is captured in the right order many times repeatedly.

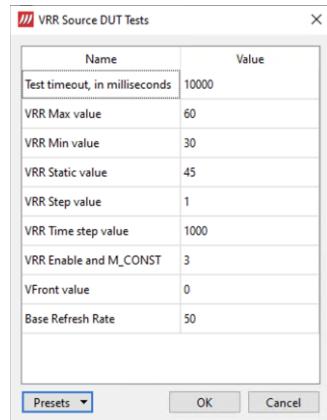
TE compares the video mode (frame Width, Height, BPP and optionally Frame rate and Color format) to provided parameters. After that captures frames to find a frame with matching CRC (check sum) of their three color components to the first provided reference. After the first matching CRC is found it compares the CRC of the following frames until the Number of frames tested parameter is reached. After that it resets the list and starts from the first CRC. The list is repeated until timeout or until the provided number of repetitions is reached.

The test is judged FAIL if video mode does not match, the first frame in the list is not found or the CRC of the following frames do not match the provided list.

The test optionally captures the failed frames as bitmap images and stores them into the hard disc.

Parameters in use

- Test Timeout (default 10 000 ms)
- Number of frames to be tested (default 20)
- Number of iterations
- Reference width (default 1920)
- Reference height (default 1080)
- Reference BPP (default 24)
- Expected frame rate (mHz, 1/1000 Hz)
- Frame rate tolerance (mHz, 1/1000 Hz)
- Expected color format
- Reference CRCs (R, G, B)


Note: Please note that in order for the TE to maintain the sequence, all CRCs in the reference frame list should be different.

VRR Source DUT Tests – HDMI Rx

Role:	Product:
HDMI Reference Sink (HDMI RX)	UCD-422

Configure

<i>VRR Max value:</i>	Maximum VRR frame rate
<i>VRR Min value:</i>	Minimum VRR frame rate
<i>VRR Static value:</i>	Static VRR frame rate
<i>VRR Step value:</i>	Change of current VRR value during a test
<i>VRR Time step value:</i>	Change of current VRR value during a test
<i>VRR Enable and M_Const:</i>	Click to open dialog for enabling <i>VRR Enable</i> and <i>M_CONST</i>
<i>VFront value:</i>	Click to open dialog for enabling <i>Base VFront</i> and <i>RB</i>
<i>Base Refresh Rate:</i>	Set Base Refresh Rate

VRR Static Test

Test verifies that DUT Source applies expected static VRR value.

After configuring the parameters operator starts the test. Test waits until DUT Source starts VRR mode. When VRR mode is detected, test verifies that received timing matches the VRR Value parameter and the data in received EMP packets match the timing.

Quick Media Switching (QMS) Test

Verify that VRR is set correctly when frame rate is changing with a set time interval. For example, change VRR from 30 to 60 Hz with step for each 1 second.

After configuring the parameters operator starts the test. Test waits until DUT Source starts VRR mode. When VRR mode is detected, test verifies that VRR is changed after each time interval set by VRR Time parameter, and the applied VRR change is as set in the parameter. Test also verifies that data in received EMP packets match with applied VRR.

VRR Dynamic Test

Verify that VRR is set correctly when frame rate is changing with each frame. For example, change VRR from 60 to 120 Hz with step 1 each frame.

After configuring the parameters operator starts the test. Test waits until DUT Source starts VRR mode. When VRR mode is detected, test verifies that VRR is changed between each frame. Test also verifies that data in received EMP packets match with applied VRR.

Electrical Test Set – HDMI Rx

Role:

HDMI Reference Sink (HDMI RX)

Product:

UCD-301

Electrical Tests verify the continuity of the interface signals and the voltage levels applied by the

Electrical Test Set	
Name	Value
Test timeout, in milliseconds	5000
Power line low voltage limit, mV	4700
Power line high voltage limit, mV	5300
Main link low voltage limit, mV	2600
Main link high voltage limit, mV	3100
HPD line logical zero low voltage limit, mV	-50
HPD line logical zero high voltage limit, mV	400
HPD line logical one low voltage limit, mV	2400
HPD line logical one high voltage limit, mV	5300
DDC lines low voltage limit, mV	4500
DDC lines high voltage limit, mV	5500
CEC line logical zero low voltage limit, mV	-50
CEC line logical zero high voltage limit, mV	600
CEC line logical one low voltage limit, mV	2500
CEC line logical one high voltage limit, mV	3600

driving electronics.

Power Test

Power Test verifies the voltage level on the +5 V power line (Pin 18) of the DUT source. The accepted value in HDMI specification is 4.7 V to 5.3 V on the sink side connector. (Called “TP2” in the HDMI specification).

The test will measure the power line voltage using two loads: 0 mA and 55 mA. The latter is the test setup in HDMI CTS specification (HDMI CTS 1.4b: Test ID 7-11: +5V Power). The test will fail if voltage level on the power line is below or above the voltage range set by the parameters.

Parameters in use

- Test Timeout (default 5 000 ms)
- Power line low voltage limit (default 4 700 mV)
- Power line high voltage limit (default 5 300 mV)

TMDS Test

TMDS Test verifies average voltage levels on TMDS signal lines (8 lines: CLK+/-, D0+/- D1+/- and D2+/-). The positive and negative lines of the TMDS differential pair are measured separately.

TMDS uses DC balanced signaling. Sink pulls the lines up to 3.3 V (AVcc) and source applies the TMDS signal by pulling the line down to ground. On an active TMDS line average voltage level is half of the voltage swing below AVcc (AVcc – Vswing/2). By default, 2.6 V to 3.1 V.

TMDS line voltages outside of the above range might indicate an abnormal situation like short circuit of two TMDS lines, short to ground, open circuit or a broken output driver.

If the measured values fall outside the criteria set by the parameters, test result is FAIL.

Note: Fail criteria for each test set-up should be considered separately depending on the source DUT and test cable configuration.

Parameters in use

- Test Timeout (default 5 000 ms)
- Main link low voltage limit (default 2 600 mV)
- Main link high voltage limit (default 3 100 mV)

Audio Test Set – HDMI Rx

Role:	Product:
HDMI Reference Sink (HDMI RX)	UCD-422

Validate audio signal frequency and glitch-free audio reproduction

Perform frequency check on the digital audio content and verify the content to be glitch-free. This test assumes that a pure sine-wave audio signal content is being transmitted to the test equipment.

The test will first capture minimum of one second of audio content. The audio is then analyzed in two stages.

First, the power spectrum is calculated, and the highest peak must be within the defined window. Resolution of the peak frequency check is better than ± 1 Hz.

In the second stage, received audio is checked for random glitches, such as dropped or duplicated samples. This is achieved by examining how the RDV (“Relative Distortion Value”) changes over time within the sampled audio.

The test is considered passed if power of audio content spectrum has its maximum within the defined window, and the number of detected audio glitches does not exceed programmed limit.

Name	Value
Expected sampling rate of audio signal	44100
Expected audible (sine) frequency as Hz	1000
Allowed deviation from expected frequency as Hz	1
Number of audio glitches allowed per test	0
Tested audio save conditions	Save none
Location where the captured audio is to be saved	0

Parameters in use

- Expected sampling rate of audio signal (default 44 100 s/sec)
- Expected audible (sine) frequency in Hz (default 1000 Hz)
- Allowed deviation from expected frequency in Hz (default 1 Hz)
- Number of audio glitches allowed per test (default 0)

Click **Location where the captured audio is to be saved** to browse for the folder to store tests.

CEC Functional Tests Set – HDMI Rx

Role:	Product:
HDMI Reference Sink (HDMI RX)	UCD-422

Parameters in use

- Test timeout, in milliseconds
- Local CEC physical address

CEC Functional Test

Test is intended to check that DUT does CEC initialization correctly after HPD. TE initialize EDID with configured address. Apply HPD and expected that Logical Physical addresses that presented in EDID will be applied with Report Physical Address message to inform TE about the mapping Logical and Physical addresses. That is expectation of CEC behavior.

CEC Phy Address test.

Test is intended to check that CEC line is working properly, and DUT can receive CEC Report Physical Address or customized OP Code. TE checks that HPD is high and CEC line available and send Report Physical Address (or customized OP Code) message in broadcast mode (or with specific destination).

CEC Wake Up test

Test is intended to check that CEC line is working properly, and DUT can send CEC Wake Up command. TE checks that HPD is high and CEC line available and wait for Wake Up message.

CEC Stand By test

Test is intended to check that CEC line is working properly, and DUT can send CEC Stand By command. TE checks that HPD is high and CEC line available and wait for Stand By message.

CEC Complete test

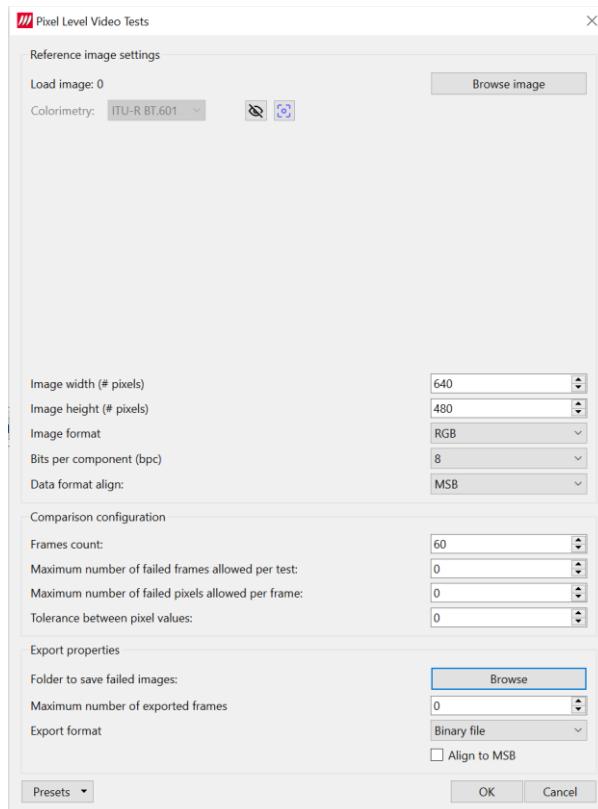
Test is intended to check that CEC line is working properly, and DUT can send sequence of commands from Stand By mode. TE checks that HPD is high and CEC line available. TE waiting for sequence of commands from DUT Wake UP and then again Stand By.

Note: The default physical address in UCD EDID is 1:0:0:0. In order to simulate a change in the address, please use another address range

Note: As a side effect, the CEC will also verify functionality of HPD and EDID reading if the test passes.

Pixel Level Video Tests – HDMI Rx

Role:


HDMI Reference Sink (HDMI RX)

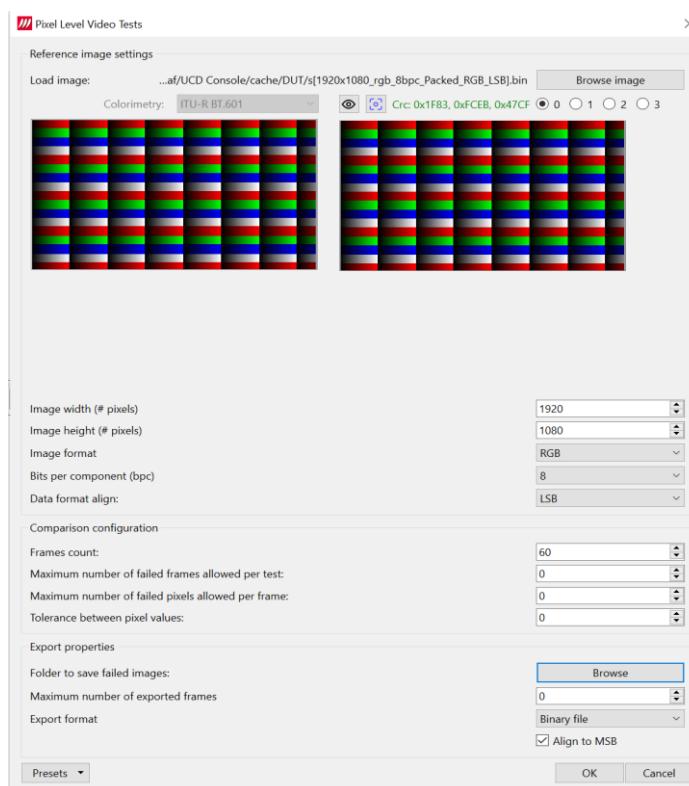
Product:

UCD-422

Compare video frame sequence with a single reference

The test compares captured frames to the provided reference image at the pixel level by buffering the indicated number of captured frames first in the local UCD device frame buffer and after that downloads them to the PC for evaluation.

The test compares the captured frames to a provided reference image on pixel level.

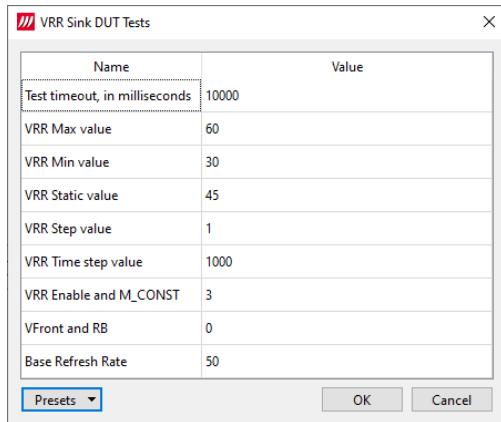

- The color component values of each pixel in the captured frame is compared to the corresponding pixels in the reference image.
- If the difference is larger than the provided tolerance, the pixel is considered failed.
- If the number of failed pixels in a frame is larger than the provided tolerance, the frame is considered failed.
- If the number of failed frames in the test is larger than the provided tolerance, the test is considered failed.
- Failed frames can be stored for evaluation.

<i>Browse image:</i>	Load reference image from disk
<i>Image width:</i>	Width expected
<i>Image height:</i>	Height expected
<i>Image format:</i>	Image format expected
<i>Bits per component:</i>	Bits per component expected
<i>Data format align:</i>	Video data alignment expected
<i>Frames count:</i>	Number of frames buffered for testing
<i>Maximum number of failed frames allowed per test:</i>	Number of failed frames allowed totally
<i>Maximum number of failed pixels allowed per frame:</i>	Number of failed pixels allowed per buffered frame
<i>Tolerance between pixel values:</i>	The allowed difference between a color component of pixel in the captured frame to the reference bitmap.
<i>Folder to save failed images:</i>	PC directory where failed frames are stored.
<i>Maximum number of exported frames:</i>	Maximum number of failed frames stored to PC
<i>Export format:</i>	Format of exported image: Binary file, PPM image, BMP image
<i>Align to MSB</i>	12bpc values are be shifted to MSB of a 16bits container. If not checked, 12 LSB are used to store colour component values.
<i>Presets:</i>	Store and recall settings

Capturing Reference Image

User can capture received video as reference:

1. In *Settings* dialog click the enable live preview icon .



2. When the preview has been enabled click the *Capture reference* icon to store a frame and use it as reference. Before accepting the frame, stability of the video is verified with a CRC stability check. Captured CRC can also be verified by the user.

VRR Sink DUT Tests – HDMI Tx

Role:	Product:
HDMI Reference Source (HDMI TX)	UCD-422, UCD-412

Configure

<i>VRR Max value:</i>	Maximum VRR frame rate
<i>VRR Min value:</i>	Minimum VRR frame rate
<i>VRR Static value:</i>	Static VRR frame rate
<i>VRR Step value:</i>	Change of current VRR value during a test
<i>VRR Time step value:</i>	Change of current VRR value during a test
<i>VRR Enable and M_Const:</i>	Click to open dialog for enabling <i>VRR Enable</i> and <i>M_CONST</i>
<i>VFront value:</i>	Click to open dialog for enabling <i>Base VFront and RB</i>
<i>Base Refresh Rate:</i>	Set Base Refresh Rate

Static VRR Test

Test verifies that DUT Sink correctly applies a static VRR value.

After configuring the parameters operator starts the test. Operator verifies that DUT Sink has applied VRR correctly and provides the information in the dialog of the test.

Quick Media Switching (QMS) Test

Verify that VRR is set correctly when frame rate is changing with a set time interval. For example, change VRR from 30 to 60 Hz with step 1 each 1 second.

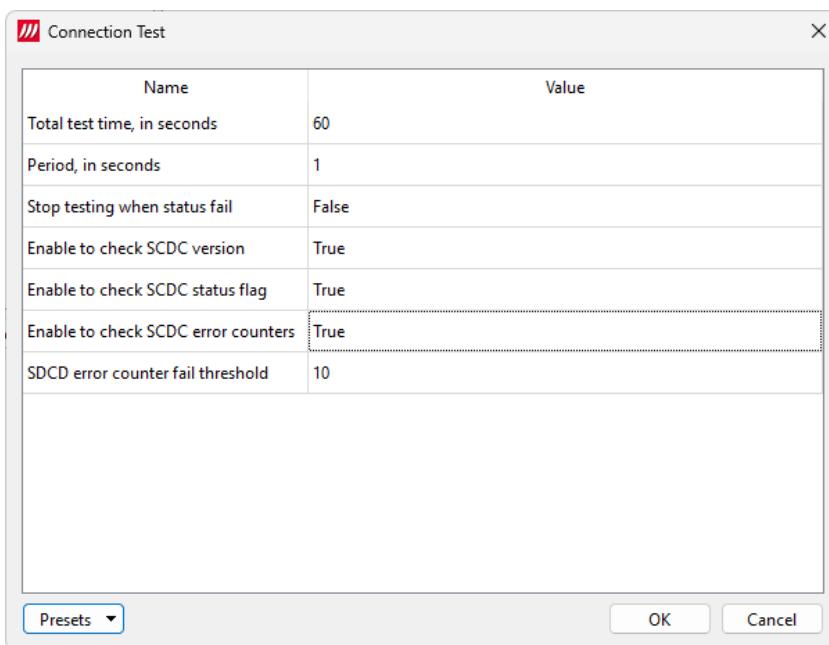
After configuring the parameters operator starts the test. Operator verifies that DUT Sink has applied VRR correctly and frame rate is changing as expected. Operator provides the information in the dialog of the test.

Dynamic Test

Verify that VRR is set correctly when frame rate is changing with each frame. For example, change VRR from 60 to 120 Hz with step 1 each frame.

After configuring the parameters operator starts the test. Operator verifies that DUT Sink has applied VRR correctly and frame rate is changing as expected. Operator provides the information in the dialog of the test.

Connection Test – HDMI Tx


Role:

HDMI Reference Source (HDMI TX)

Product:

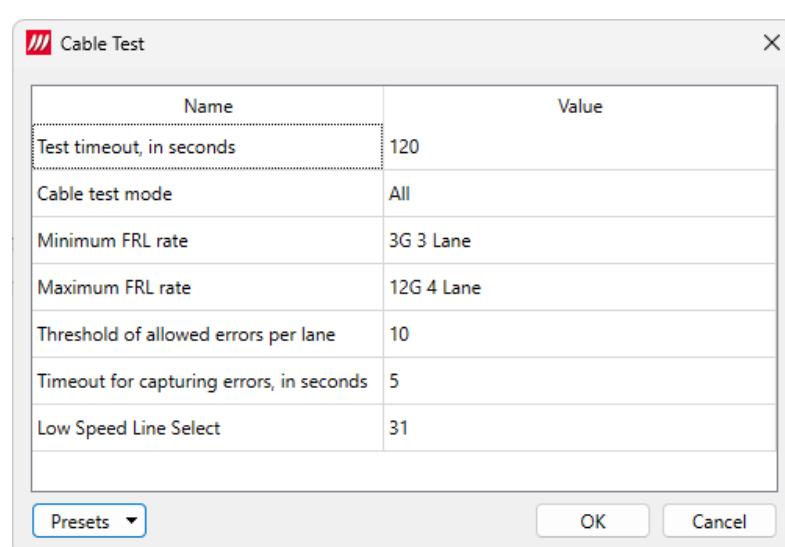
UCD-422, UCD-412

Configure

<i>Total test time, in seconds:</i>	Set total test time in seconds
<i>Period, in seconds:</i>	Set periods in seconds
<i>Stop testing when status fail:</i>	Set False / True
<i>Enable to check SCDC version:</i>	Set False / True
<i>Enable to check SCDC status flag:</i>	Set False / True
<i>Enable to check SCDC error counters:</i>	Set False / True
<i>SCDC error counter fail threshold:</i>	Set threshold for error counter failure

Cable Test – HDMI Tx

Role:	Product:
HDMI Reference Source (HDMI TX)	UCD-422


Cable Check Test

Test is intended to check that cable can be properly used with UCD-422. Cable should be connected in loopback mode.

Test tries to pass Link training on different rates. If errors are presented on the lanes, then TE applies different FFE level to find configuration where is the best quality (minimum of errors).

If Link training can be done without errors on all link rates then cable qualified as acceptable for usage with UCD-422.

Configure

<i>Test timeout, in seconds:</i>	Timelimit for the test
<i>Cable test mode:</i>	High speed can include detection errors on the high speed lanes. Low speed - detect that i2c and ddc lanes are working properly. All modes checks both High speed and low speed.
<i>Minimum FRL rate:</i>	Determine minimum of range for detection of cable quality
<i>Maximum FRL rate:</i>	Determine maximum of range for detection of cable quality
<i>Threshold of allowed errors per lane:</i>	Determine allowed number of errors
<i>Timeout for capturing errors, in seconds:</i>	Determine period for screening errors
<i>Low speed line select:</i>	Configure which lines of Low speed will be checked.

APPENDIX F: VTP PATTERN LANGUAGE

General

The Vpattern definition language (in the following simply “VTP”) is a straightforward yet flexible way of describing test patterns for UCD Generators. This description is providing an introduction and examples of the most usable instructions and parameters.

The VTP language uses text command syntax. Each row represents one drawing instruction. The coordinate system can be either absolute or scaled. In the absolute mode the actual pixel position is referred while in the scaled mode the coordinates refer to the “Drawing resolution” used while drawing. For both absolute and scaling coordinates the origin is the upper left hand corner of the screen.

Terminology

The following terms are used in this document:

Coordinate system: two numerical ranges of integer, positive numbers. E.g. {0,799},{0,599} or {0,10000},{0,10000}.

Coordinates: a tuple of integer, positive numbers used to address a position on an image, e.g. (100,250). The first number is the horizontal position, the second one the vertical position. The actual position is always related to the coordinate system currently in use.

Drawing resolution: the width and height of the space that can be used for drawing, expressed in pixels. E.g., 2560 by 1600.

Drawing area: a 2-dimensional area spanning all of the drawing resolution, expressed in the current coordinate system notation. E.g., if the drawing resolution is 800 x 600 pixels, the drawing area includes all points (x,y) where x = 0 to 799 and y = 0 to 599 in ABSOLUTE mode or x = 0 to 10000 and y = 0 to 10000 in SCALED mode.

Notation

The following notation is used in this document:

- A token is enclosed by characters ‘<’ and ‘>’. For instance, <variable> represents a generic variable.
- Different legal choices for a command parameter are separated by character ‘|’. For instance, <variable> | <number> means that either variable or number can be used as parameters.
- Items that can be repeated 0, 1 or more times are preceded by ‘{’ and followed by ‘}*’. For instance {<number>}* means zero, one or more occurrences of a number.

Syntax rules

The following general syntax rules apply to VTP language files:

- The VTP is a text-based, interpreted language.
- Commands, variables, and constant names are not case-sensitive.
- All text to the right of a semicolon (‘;’) is treated as a comment.
- All strings are delimited by quotation marks (“a string”).
- Quotation mark and backslash characters must be prefixed by a backslash character (a quotation mark character = ‘”’) (a backslash character = ‘\\’).
- Filenames cannot contain pathnames.

Commands

Scaling commands

All drawing commands using coordinates can refer either to absolute or scaled coordinates. The absolute coordinate system starts at 0 and its measurement unit is the pixel (vertically the line). It extends up to the maximum drawing resolution in use minus one, expressed in pixels too.

Conversely, the scaled coordinate system ranges from 0 to 10000, independently from the drawing resolution. Its measurement unit is thus a flexible, virtual pixel.

Absolute coordinates provide the fastest drawing speed, but they are resolution specific. Scaled coordinates are resolution independent while introducing a slight speed penalization.

For both systems, the origin (0,0) refers to the upper left hand corner of the screen.

ABSOLUTE

Syntax: ABSOLUTE

This command is normally used in the beginning of the VTP file. All drawing commands issued after ABSOLUTE will have absolute coordinate values, i.e., their coordinates will be interpreted as pixels and lines.

The allowed coordinate values are from 0 to the maximum drawing resolution minus one. For instance, for a drawing resolution of 2560 x 1600 pixels, the allowed coordinate range (x,y) for x is 0 to 2559 and for y 0 to 1599.

Constants MAXX and MAXY can be used in place of the numeric values to achieve basic scaling capabilities.

SCALED

Syntax: SCALED

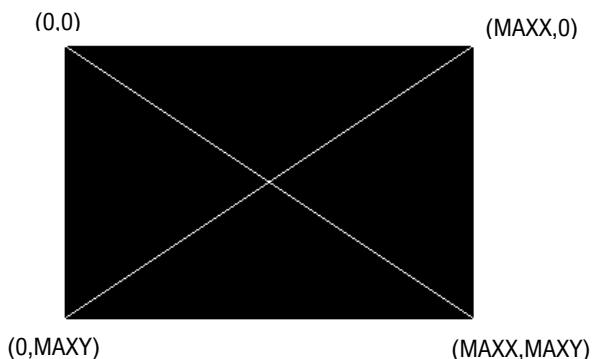
All drawing commands issued after the SCALED command will have their coordinates interpreted as within a range from 0 to 10000 (10001 possible coordinate values), regardless of the current drawing resolution. Positioning can be calculated as percentages. If you wanted to address a point at 50% of the drawing resolution, then you would use the number 5000. If you wanted 75% you would simply use the 7500.

Graphics Drawing Commands

All of the following graphics drawing commands use the currently selected foreground color for shape perimeter and filling.

LINE

Syntax: LINE x1 y1 x2 y2


Draws a line from point (x1,y1) to point (x2,y2).

Example:

You can draw a white diagonal cross using either ABSOLUTE and SCALED coordinate mode and get the same result.

```
ABSOLUTE ; Set scaling mode to absolute
COLORDEPTH 8 ; 8 bits per color
COLORRGB 255 255 255 ; white
LINE 0 0 MAXX MAXY ; Draw a line from upper left to lower right corner
LINE 0 MAXY MAXX 0 ; Draw a line from lower left to upper right corner
Or if you want a fixed size for 640 x 480 resolution
LINE 0 0 639 479
LINE 0 479 639 0
```

The pattern will look like this:

Using SCALED instead of ABSOLUTE.

```
SCALED
COLORDEPTH 8
COLORRGB 255 255 255
LINE 0 0 10000 10000
LINE 0 10000 10000 0
```

BOX

Syntax: BOX x1 y1 x2 y2

Draws a filled rectangle with upper left corner (x1,y1) and lower right corner (x2,y2).

Example:

This code will create a full white screen with all resolutions.

```
SCALED
COLORDEPTH 8
COLORRGB 255 255 255
BOX 0 0 10000 10000
```

DOT

```
Syntax: DOT x y
```

Draws a single dot at location (x,y).

FILL

```
Syntax FILL x y
```

Initiates a flood fill (or seed fill) with foreground color starting from position (x,y).

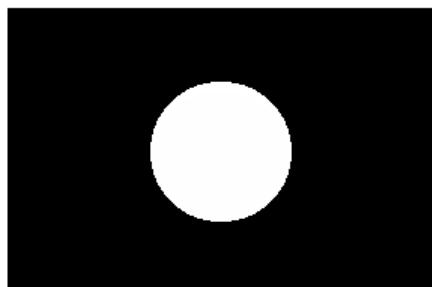
CIRCLE


```
Syntax: CIRCLE x y r
```

Draws a circle with center point at (x,y) and radius r. Please, note that when using SCALED coordinates radius r is expressed using reference to vertical maximum.

Example:

```
SCALED  
COLORDEPTH 8  
COLORRGB 255 255 255  
CIRCLE 5000 5000 2500
```


The pattern will look like this:

FCIRCLE

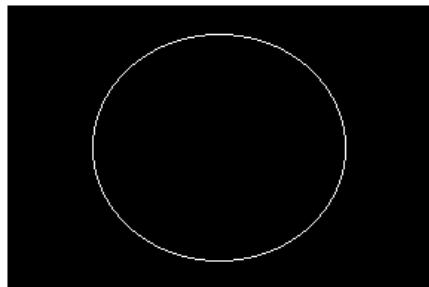
```
Syntax: FCIRCLE x y r
```

Draws a circle with center point at (x,y) and radius r. Filled with foreground color. Please, note that when using SCALED coordinates radius r is expressed using reference to vertical maximum.

The pattern will look like this:

ELLIPSE

Syntax: ELLIPSE x y hr vr


Draws an ellipse with center point at (x,y), horizontal radius hr and vertical radius vr.

You can use ELLIPSE instead of CIRCLE for example for compensating the stretching in applications where the displayed pixel is not square.

Example:

```
SCALED
COLORDEPTH 8
COLORRGB 255 255 255
ELLIPSE 5000 5000 3000 4000
```

The pattern will look like this:

Text Drawing Commands

All of the following commands use the currently selected foreground color for the “foreground” pixels of the font and the currently selected background color for “background” pixels.

TEXTPOS

Syntax: TEXTPOS x y

Sets the text drawing position to point (x,y).

TEXT

Syntax: TEXT <string> | <var> | <const> { <string> | <var> | <const> }*

The command executes a CR and LF (carriage return and line feed) and then draws a text string <string>, a variable <var>, a constant <const> or a combination of them starting from the current text position.

<string> parameter is a quoted sequence of characters. If the string contains a quote character (") or a backslash character (\) then it must be preceded with a back slash character (\).

<var> is a parameter variable (A – Z, MAXX, MAXY) defined by SET command.

<const> one of the Timing Variables. Timing variables are defined by currently loaded timing parameters. Please refer to Chapter 3.

Example:

```
ABSOLUTE
COLORDEPTH 8
COLORRGB 255 255 255
TEXTPOS 100 100           ; Text starting point 100 pixels from left edge and
                           ; 100 display lines down from top
TEXT "HRES=" HR " PIXELS" ; This will draw the text HRES then the value of variable HR
                           ; and PIXELS
TEXT "Quote character \" and backslash \\"
```

Program Flow Commands

REPEAT

Syntax: REPEAT <variable> a b s

All commands after between REPEAT and END command are repeated the number of times defined by <variable>. <variable> is set to value a before starting the first iteration loop. At the end of each iteration, variable is incremented by s (variable = variable + s). The REPEAT is terminated when variable reaches or exceeds value b, and the execution continues from the command following the END command. For example:

```
SCALED
COLORDEPTH 8
COLORRGB 255 255 255
REPEAT W 0 10000 200
LINE W 0 W 10000
END
```

A maximum of 2 REPEAT loops can be nested (placed inside each other).

END

Syntax: END

This command follows a REPEAT command and defines a group of instructions to be repeated.

Color Commands

The user can assign the used colors in two basic ways: either by giving the actual Red, Green and Blue (or R, G and B) color component values or using pre-defined color palettes. The first method is referred as True Color Mode and the latter as Palette Mode.

In True Color Mode the numerical values given for R, G and B will be the actual output signal intensity values for the pixel in question. The numerical color value in Palette Mode will act as an address (or index) to a pre-defined color in a 256 color table. The output signal intensity will be the R, G and B value entry in the cell where the address points to.

Palette mode can only be used with True Color Mode is .

COLORDEPTH

Syntax: COLORDEPTH n

The command is used in True Color Mode (COLORMODE 2), to define the number of bits used for each color component (R, G and B) of the data to be displayed. Possible values for the parameter n are 6, 8, 10 and 12. If COLORDEPTH command is not used, 10 bits per color is used.

Example: To display a bitmap that uses 8 bits for r, g and b (24-bit colors) you have to use COLORDEPTH 8.

Command	Nr of color bits	Range of values for R, G and B
COLORDEPTH 6	18	0 to 63
COLORDEPTH 8	24	0 to 255
COLORDEPTH 10	30	0 to 1023
COLORDEPTH 12	36	0 to 4095

COLORDEPTH can be used only once in a VTP file, and it has to be placed before all drawing instructions it is supposed to affect.

COLORRGB

Syntax: COLORRGB r g b

The command defines the foreground color used for the following drawing commands. The command is used in True Color Mode only.

The range of values for r, g and b depends on the bits per color used. If not changed with COLORDEPTH command, 10 bits per color is used. Please refer to COLORDEPTH command for range of values.

Various Commands

SET

Syntax: SET <variable> n

Assigns value n to programming variable called variable. n must be a positive number or zero.

Variables

Timing Variables

Timing Variable	Value name
HF	Drawing resolution horizontal size minus one
HP	Drawing resolution vertical size minus one
HR	Current timing horizontal frequency (MHz?)
HA	Current timing horizontal period (pixels)
HS	Current timing horizontal resolution (pixels)
HBP	Current timing horizontal active time (pixels)
HFP	Current timing horizontal sync length (pixels)
VF	Current timing horizontal back porch length (pixels)
VP	Current timing horizontal front porch length (pixels)
VR	Current timing vertical frequency (MHz?)
VA	Current timing vertical period (lines)
VS	Current timing vertical resolution (lines)
VBP	Current timing vertical active time (lines)
VFP	Current timing vertical sync length (lines)
PF	Current timing vertical back porch length (lines)
HLB	Current timing vertical front porch length (lines)
HRB	Pixel frequency (Mpps?)
VTB	Drawing resolution horizontal size minus one
VBB	Drawing resolution vertical size minus one

Expressions

Any command numeric parameter can be replaced by an expression, according to the syntax below:

```

<term> ::= <variable> | <constant> | <number>
<expression> ::= <term> { '+' | '-' | '*' | '/' | '%' } <term>
<parameter> ::= <term> | <expression>

```

Some example of legal parameter values:

```

B
MAXX
342
B + MAXX
B / 2
B * C

```

Expressions have always positive integers or zero value. When an expression evaluates to a negative value, it is set automatically to zero. Number values are also always positive integers or zero.

Assignments

A variable can be assigned a numerical value by using the SET command.

The second parameter of the SET command can be replaced by an expression thus allowing commands like those here below:

SET C B+MAXX

SET K K+1

SET K A+B

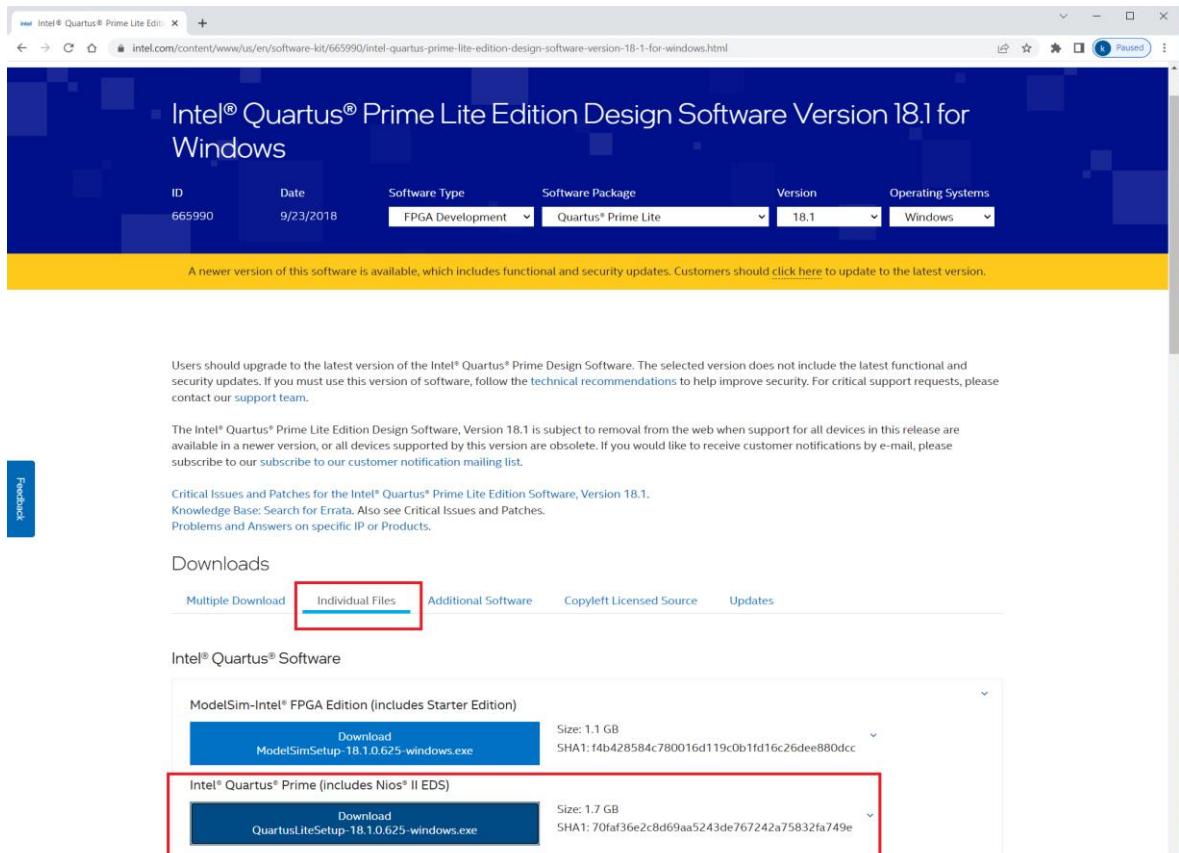
Default state at VTP execution startup

<i>Coordinate system:</i>	ABSOLUTE
<i>Foreground color:</i>	1023 1023 1023
<i>Background color:</i>	0 0 0
<i>Image:</i>	Output image is cleared (all black)
<i>Variables:</i>	All variables are initialized to zero
<i>Color depth:</i>	COLORDEPTH 10

APPENDIX G: FIRMWARE UPDATE WITH QUARTUS

The chapter below describes a procedure for updating UCD-4XX Series Firmware when the normal FW Update procedure fails.

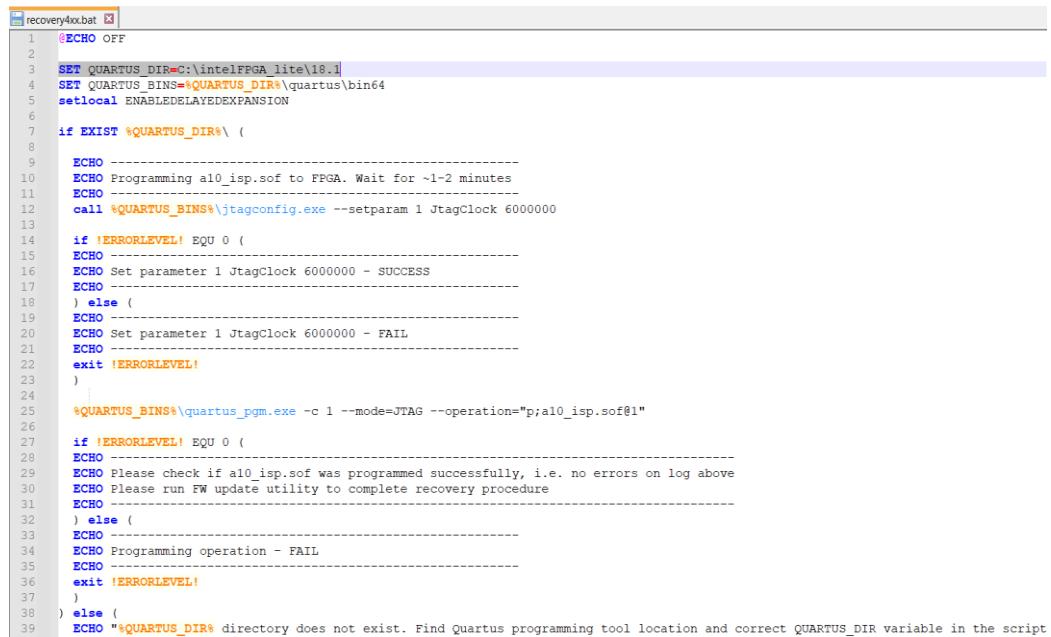
Note


The firmware recovery procedure is only available for Windows operating system.

Downloading Tools

The Recovery patch is programmed to UCD Device with a separate tool called **Intel® Quartus® Prime Lite Edition Design Software Version 18.1 for Windows**. The tool can be downloaded from the **Intel® FPGA** website:

<https://www.intel.com/content/www/us/en/software-kit/665990/intel-quartus-prime-lite-edition-design-software-version-18-1-for-windows.html>


1. On the download page, please select section “**Individual Files**”. Please download the software under “**Intel® Quartus® Prime (includes Nios® II EDS)**”.
2. Please download and install the tool using defaults on the PC.

Step 1

1. Connect the UCD device to the power supply and switch on power.
2. Connect the UCD device with a USB cable to the PC through USB connector (Please refer to chapter **Product Description > Connections** earlier in this document).
3. Please locate the *UCD-4xx_recovery.zip* file. By default the file is at C:\Program Files\Unigraf\Unigraf UCD Tools\recovery.

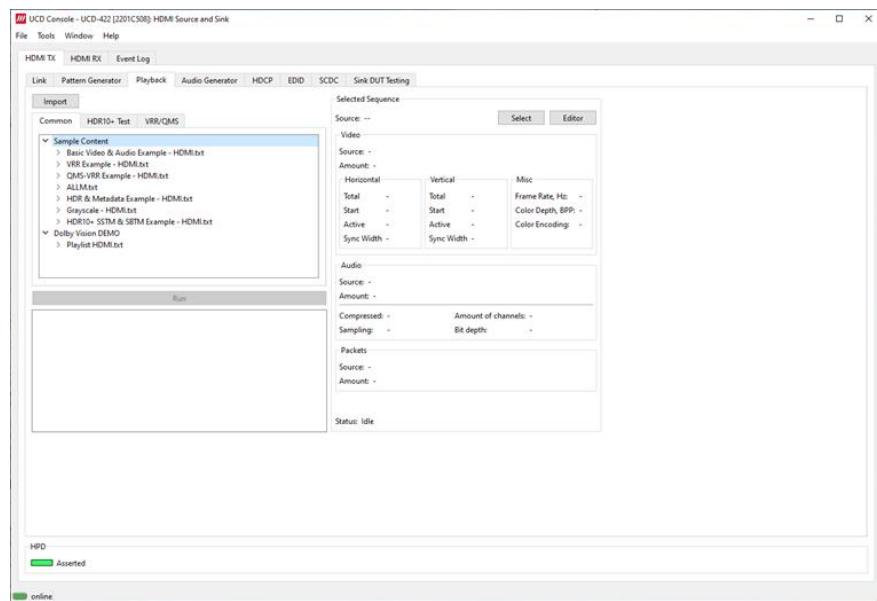
4. Extract the content of the ZIP file in a folder on your PC (e.g., C:\Temp).
5. Open Windows **Command Prompt** application.
6. Navigate to the directory to where the ZIP file was extracted (e.g. cd \Temp).
7. Connect a micro-USB cable to the **JTAG** connector on the UCD device (Please refer to chapter **Product Description > Connections** earlier in this document).
8. In the directory where the ZIP file was extrected (e.g. c:\Temp) please edit file **recovery.bat**
9. On line three, the parameter “**QUARTUS_DIR**” is set to point to the folder where the Quartus Programmer was installed (by default **C:\intelFPGA_lite\18.1**). Edit and save as needed.


```

1  @ECHO OFF
2
3  SET QUARTUS_DIR=C:\intelFPGA_lite\18.1
4  SET QUARTUS_BINS=%QUARTUS_DIR%\quartus\bin64
5  setlocal ENABLEDELAYEDEXPANSION
6
7  if EXIST %QUARTUS_DIR%\ (
8
9      ECHO -----
10     ECHO Programming a10_isp.sof to FPGA. Wait for ~1-2 minutes
11     ECHO -----
12     call %QUARTUS_BINS%\jtagconfig.exe --setparam 1 JtagClock 600000
13
14     if !ERRORLEVEL! EQU 0 (
15         ECHO -----
16         ECHO Set parameter 1 JtagClock 600000 - SUCCESS
17         ECHO -----
18     ) else (
19         ECHO -----
20         ECHO Set parameter 1 JtagClock 600000 - FAIL
21         ECHO -----
22         exit !ERRORLEVEL!
23     )
24
25     %QUARTUS_BINS%\quartus_pgm.exe -c 1 --mode=JTAG --operation="p;a10_isp.sof@1"
26
27     if !ERRORLEVEL! EQU 0 (
28         ECHO -----
29         ECHO Please check if a10_isp.sof was programmed successfully, i.e. no errors on log above
30         ECHO Please run FW update utility to complete recovery procedure
31         ECHO -----
32     ) else (
33         ECHO -----
34         ECHO Programming operation - FAIL
35         ECHO -----
36         exit !ERRORLEVEL!
37     )
38 ) else (
39     ECHO "%QUARTUS_DIR%" directory does not exist. Find Quartus programming tool location and correct QUARTUS_DIR variable in the script

```

10. In the **Command Prompt** application make sure that the current directory is still the same (e.g. C:\temp).
11. Launch batch **recovery.bat** by typing “recovery.bat” at the prompt.
12. Please wait until the batch file has been completed (may take up to several minutes).


Step 2

Perform FW update procedure as described in section **Installation > Firmware Update Procedure** earlier in this manual.

After Recovery procedure has completed, you can delete the files (in e.g., C:\Temp).

APPENDIX H: PLAYLISTS AND SCENARIOS

UCD Console's Playback enables you to run scripts called playlists. Use playlists to stream video, audio and metadata. See the Unigraf UCD Console Playback Tutorial at www.unigraf.fi/resource/tutorial-run-edit-and-create-sdr-and-hdr-scenarios-with-unigrafs-playback-tool/

Playlist

A *Playlist* is a text script consisting of a *[Device]* block and *[Scenario]* block(s). A *[Device]* block lists the serial number of the device and *connectortype* (such as a displayport transmitter). *[Scenarios]* blocks have a *caption* (which are used to display sample content), a period (*Scenario* duration in milliseconds) and a relative path to a script text file (ex. Scenario_PSR1_Entry_N.txt). Scenarios are played in sequence.

Scenario

A *scenario* is a script text file to specify a sequence of video frames, metadata packets and audio to be transmitted.

Frame Memory

Before transmission content is loaded to frame memory buffer of the UCD device. Frame buffer memory limits content (number of frames) that can be played. UCD-5XX devices by default feature 16 gigabytes of memory. This enables loading up to 320 4K or 80 8K video frames. Contact Unigraf for information for larger frame buffer sizes.

Sample Content

You can use sample content as a basis for creating custom test sequences: see UCD Console *Playback* tab. Sample content is stored by default (on Windows) at *C:\Program Files\Unigraf\Unigraf UCD Tools\Resources\playback\content*. See [Sample Content in Playback](#) in this Appendix.

Playlists

A *playlist* defines the UCD device to be used and the output destination for transmission. It lists *scenarios* the played (video and audio sequences including metadata) to be transmitted and their duration.

Note: *Playlists* and *Scenarios* are technology dependent. Metadata (or packets) differ for HDMI and DisplayPort.

Device block

Section describes what device and what output connector to use.

Key	Description	Possible values
[Device]	Required. Start of the Device block.	
serialnumber	Required. Specifies serial number of the UCD device. The '*' wildcard can be used if only one UCD source device is connected to the PC.	'*' '1722C333'
connectortype	Required. Specifies output connector type to be used. Playlists shall not contain scenarios for different connector types.	'HDMI Out' 'DisplayPort Out' 'USBC Out'
reset	Only applies to UCD-323.	

Scenario block

Section describes selected scenario and its playback parameters. Playlist runs scenarios in the order they are listed.

Key	Description	Possible values
[Scenario]	Required. Start of a <i>Scenario</i> block. <i>Playlists</i> can have multiple <i>Scenario</i> blocks.	
caption	Optional. Title. Any character string accepted.	'Scenario 1'
path	Required. Specifies relative path to scenario file.	Any valid path
period	Required. Duration of Scenario in msec. The duration is ignored if close-after-upload is set to '1'.	'60000' '5000'
close-after-upload	Optional. When set to '1', command line version of the Playback tool will exit after loading scenario content and starting playback.	'0' or '1' Default '0'
execute-after-upload	Optional. Executes provided command in cmd.exe or bash and waits for its completion. Calculation of 'period' starts after the command is executed.	'script.bat && dir' 'rmdir /home/user/test'
prompt	Optional. Prompt text. Launches a dialog with prompt text and <i>Ok</i> and <i>Abort</i> buttons:	'Record video with camera and click OK or Abort'

Scenarios

A Scenario is text file for specifying a specific sequence of video frames, events (packets) and audio to be played in order. Scenarios also set up the device state for transmission.

Parameters

Scenario parameters are defined below. items.

Scenario item	Description
<i>video</i>	Path and file name format of video frame files
<i>audio</i>	Path and file name of the audio file
<i>packets</i>	Path and file name format of metadata packet files
<i>porder</i>	Content Playing Order. Please see <i>Content Playing Order</i> below.
<i>mappin</i>	
<i>align1</i>	Alignment of 12-bit binary pixel data. '1' aligned to LSB; '0' aligned to MSB.
<i>audioswap</i>	'1' for Little Endian audio samples
<i>audiocompressed</i>	'1' compressed audio; '0' uncompressed audio
<i>audiosampling</i>	Audio sampling rate. E.g., 44100
<i>audiochannels</i>	Nr. of audio channels
<i>audiobits</i>	Audio bits per sample (usually 16 or 24)
<i>scrambler</i>	'1' scrambling enabled; '0' scrambling disabled
<i>audiosync</i>	Audio sync
<i>colorspace</i>	Video color space: RGB; YUV444; YUV422; YUV420
<i>bitspercolor</i>	Video color depth (bits per color)
<i>timing.hactive</i>	Timing: Horizontal active
<i>timing.vactive</i>	Timing: Vertical active
<i>timing.htotal</i>	Timing: Horizontal total
<i>timing.vtotal</i>	Timing: Vertical total
<i>timing.hstart</i>	Timing: Horizontal start
<i>timing.vstart</i>	Timing: Vertical start
<i>timing.hsync</i>	Timing: Horizontal sync width
<i>timing.vsync</i>	Timing: Vertical sync width
<i>timing.frate</i>	Timing: frame rate
<i>hdcp</i>	HDCP version used (can be 1.4 2.3 or 'none')
<i>loadingRGB</i>	The R, G and B color components of solid color pattern shown when content is being uploaded to the device before playback (e.g., 0,0,0)
<i>linkRate</i>	Default link rate. HDMI: 0 = TMDS; 1 – 5 = FRL with 3, 6, 8, 10 and 12 Gbps link rate. DP: Link rate = Value × 0.27 Gbps. (E.g., 20 = 5.4 Gbps/lane (HBR2)).
<i>linkRateMin</i>	Minimum link rate desired. Scenario will fail if not achieved
<i>DSC timing parameters</i>	Parameters are different for DP and HDMI. See below.

DSC Timing parameters for HDMI

dscFrameRate	DSC Timing: Frame rate [fps] × 1000
dscHactive	DSC Timing: Horizontal active
dscHblank	DSC Timing: Horizontal blank
dscVtotal	DSC Timing: Vertical total
dscVsync	DSC Timing: Vertical sync
dscVstart	DSC Timing: Vertical start
dscVactive	DSC Timing: Vertical active

DSC Timing parameters for DP

dscFrameRate	DSC Timing: Frame rate [fps] × 1000
dscVtotal	DSC Timing: Vertical total
dscVsync	DSC Timing: Vertical sync
dscVstart	DSC Timing: Vertical start
dscVactive	DSC Timing: Vertical active
dscHtotal	DSC Timing: Horizontal total
dscHsync	DSC Timing: Horizontal sync
dscHstart	DSC Timing: Horizontal start
dscHactive	DSC Timing: Horizontal active

Content Playing Order

Play order is a sequence of steps. Steps are delimited with semicolons (;).

Each step has:

Range (possibly numbered e.g. allm_000.jpg, allm_001.jpg, ...) of video frame(s)

How many times the frame(s) are played

Packet(s) (possibly numbered e.g. allm_0.bin, allm_1.bin, ...) indices to be sent during the video frame(s) transmission

Color format

Optional frame rate when VRR/Adaptive-Sync is enabled

Format

Each scenario step is of the form :

pV:R:E:FvXX;

Parameters

Please see table below for description of used parameters.

Char	Description	Possible values	Examples
:	Separator between step parameters.	:	See below
;	Step delimiter.	;	See below
p	Optional. Indicates assertion of a HPD pulse on HDMI RX connector of UCD device during current step. Preceding video frame index. Only for HDMI playback.	'p'	'p1:60:1:256;' 'p0-59:60:1:256;'
V	Required. Video frame indices (zero based). Parameters are applied to all frames in the step. Images (possibly numbered) are loaded from the <i>video</i> file path.	'1' '1,2,5' '0-59'	'1:60:16:256;' '1,2,5:60:16:256;' '0-59:60:16:256;'
R	Required. Repetitions of current step. For example, '1' with 60 FPS frame rate means that current step will be played only for 1/60 of a second.	'30' '1'	'1:30:16:256;' '1:1:16:256;'
E	Optional. Metadata packet indices (zero based): A single packet or a comma separated list of packets. The index may be of the form 3l15 (lower case 'l'). At which vertical line do we want to put our packet in. 3l15 means insert packet 3 at line 15. Packets are loaded from the <i>packets</i> path.	'0' '4,1,29' none 3l15	'1:30:0:256;' '1:30:4,1,29:256;' '1:30::256;' 0:10000:3l15:256;
F	Required. Color format and color depth. See Color Format below.	'256' '513'	'1:30:0:256;' '1:30:0:513;'
vXX	Optional. Control of frame rate when VRR/Adaptive-Sync is enabled. To enable VRR/Adaptive-Sync, the corresponding HDMI VSIF event must be included. The parameter is in the form 'vXX', where 'XX' is the frame rate.	'v60' 'v30'	'1:30:0:256v60;' '1:30:0:256v30;'

Color Format

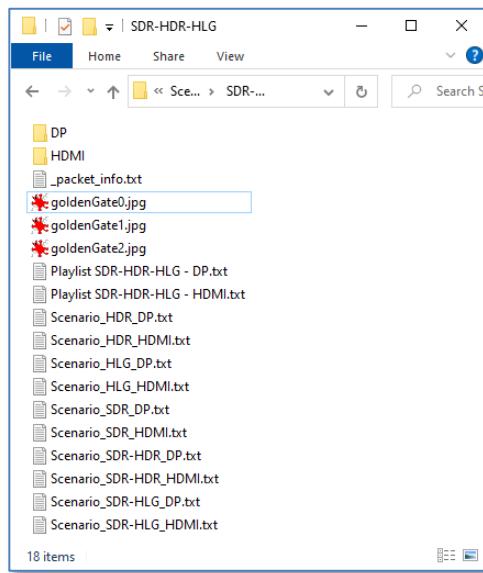
Color format is a two-byte value presented in decimal. The lower byte provides an index to used color space and the higher byte an index to the color depth. Please find the indexes in the table below.

Index	Color Depth (bits/color)	Color Space
0	6	RGB
1	8	YCbCr 4:4:4
2	10	YCbCr 4:2:2
3	12	YCbCr 4:2:0
4	16	—

The parameter value is encoded as follows:

$[Color\ Depth] \times 256 + [Color\ Space]$,

where *[Color Depth]* and *[Color Space]* are indexes obtained from the table above.


For example, parameter for YCbCr 4:4:4, 10 bits is $(2 \times 256 + 1) = 513$.

Pre-calculated values for available color formats are shown below:

	6 BPC	8 BPC	10 BPC	12 BPC	16 BPC
RGB	0	256	512	768	1024
YCbCr 4:4:4	N/A	257	513	769	1025
YCbCr 4:2:2	N/A	258	514	770	1026
YCbCr 4:2:0	N/A	259	515	771	1027

Example

Please find below description of Playlist SDR-HDR-HLG – HDMI.

Playlist file (Playlist SDR-HDR-HLG - HDMI.txt)

Playlist item and example content	Description
[Device]	Start of device section
serialnumber=*	Only one UCD device present.
connectortype=HDMI Out	HDMI output
[Scenario]	Start of Scenario 1
caption = SDR	Scenario title "SDR"
period = 10000	Duration 10 sec
path = Scenario_SDR_HDMI.txt	Scenario file: Scenario_SDR_HDMI.txt in current folder
[Scenario]	Start of Scenario 2
caption = HDR	Scenario title "HDR"
period = 10000	Duration 10 sec
path = Scenario_HDR_HDMI.txt	Scenario file: Scenario_HDR_HDMI.txt in current folder
[Scenario]	Start of Scenario 3
caption = HLG	Scenario title "HLG"
period = 10000	Duration 10 sec
path = Scenario_HLG_HDMI.txt	Scenario file: Scenario_HLG_HDMI.txt in current folder
[Scenario]	Start of Scenario 4
caption = SDR – HDR	Scenario title "SDR – HDR"
period = 10000	Duration 10 sec
path = Scenario_SDR-HDR_HDMI.txt	Scenario file: Scenario_SDR-HDR_HDMI.txt in current folder
[Scenario]	Start of Scenario 5
caption = SDR – HLG	Scenario title "SDR – HLG"
period = 10000	Duration 10 sec
path = Scenario_HDR_HDMI.txt	Scenario file: Scenario_HDR_HDMI.txt in current folder

Scenario File (Scenario_SDR-HDR-HDMI.txt)

Scenario item and example content	Description
video=goldenGate0.jpg	Video files in current folder, file name format goldenGate0.jpg (0...)
audio=<Audio not selected>	Audio not selected
packets=HDMI\Infoframes_0000.bin	Packet files in folder HDMI\, file name format Infoframes_0000.bin (0...)
porder=0:180:2:256;1:180:2,0:256;	180 frames of image index 0, Packet index 2, RGB 8 bpc 180 frames of image index 1, Packets index 2 and 0, RGB 8 bpc
align12=1	Pixel data is aligned to LSB
audioswap=0	-
audiocompressed=0	-
audiosampling=0	-
audiochannels=0	-
audiobits=0	-
scrambler=0	scrambling disabled
colorspace=RGB444	Video color space: RGB 4:4:4
bitspercolor=8	Video color depth: 8 (bpc)
timing.hactive=1920	Timing: Horizontal active
timing.vactive=1080	Timing: Vertical active
timing.htotal=2200	Timing: Horizontal total
timing.vtotal=1125	Timing: Vertical total
timing.hstart=192	Timing: Horizontal start
timing.vstart=41	Timing: Vertical start
timing.hsync=44	Timing: Horizontal sync width
timing.vsync=5	Timing: Vertical sync width
timing.frate=60000	Timing: Frame rate 60 fps
hdcp=none	HDCP not enabled
loadingRGB=52,127,150	Solid color pattern shown when content is being uploaded to the device before playback is R=52, G=127, B=150.

Sample Content in Playback Tab

UCD Console's Playback tab features a set of examples for the user to create custom test content. This content is stored by default in `C:\Program Files\Unigraf\Unigraf UCD Tools\ldata\playback\content`. It is advisable to create copy of the installed files and edit the copies.

Note: Playlists and Scenarios are interface technology dependent.
The provided examples are different for HDMI and DisplayPort.

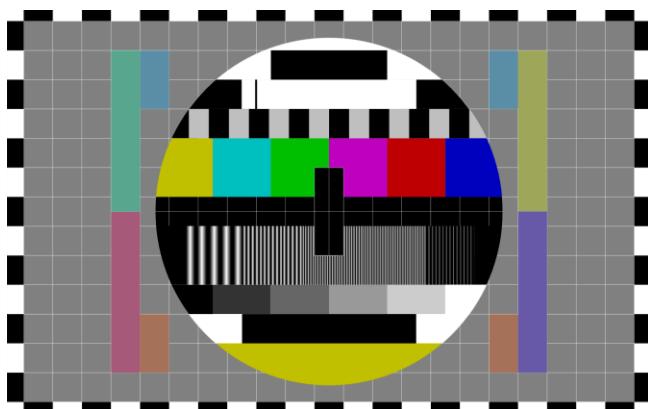
Provided examples for each interface are shown below:

HDMI

The following playlists are available for HDMI interface.

Playlist Name	Description	Location
Basic Video & Audio Example	Example playlist for demonstrating the use of video and audio files.	<code>C:\Program Files\Unigraf\Unigraf UCD Tools\ldata\playback\content\Basic</code>
VRR Example	Playlist for demonstrating Variable Refresh Rate (VRR) capability of a DUT monitor. Utilizes extensively frame sequencing capability in scenario, and the use of metadata packets.	<code>C:\Program Files\Unigraf\Unigraf UCD Tools\ldata\playback\content\VRR</code>
QMS-VRR Example	Playlist for demonstrating Quick Media Switching - Variable Refresh Rate (QMS-VRR) capability of a DUT monitor. Utilizes extensively frame sequencing capability in scenario, and the use of metadata packets.	<code>C:\Program Files\Unigraf\Unigraf UCD Tools\ldata\playback\content\VRR</code>
ALLM	Playlist for demonstrating Auto Low-latency Mode (ALLM) capability of a DUT monitor.	<code>C:\Program Files\Unigraf\Unigraf UCD Tools\ldata\playback\content\ALLM</code>
Audio-Video Latency	These scenarios can be used to estimate audio-video synchronization using external tools like Sync-One2 or similar.	<code>C:\Program Files\Unigraf\Unigraf UCD Tools\ldata\playback\content\AV Latency</code>
HDR & Metadata Example	Example playlist that demonstrates the use of video files and metadata packets in testing a DUT monitor	<code>C:\Program Files\Unigraf\Unigraf UCD Tools\ldata\playback\content\HDR GoldenGate</code>
Grayscale	The scenarios show smooth transition though shades of gray from black to white.	<code>C:\Program Files\Unigraf\Unigraf UCD Tools\ldata\playback\content\Grayscale</code>
HDR10+ SSTM & SBTM Example	Playlist demonstrates using HDR10+ SSTM VSIF for Source-Side Tone Mapping, and HDMI Forum SBTM VSIF for Source-Based Tone Mapping.	<code>C:\Program Files\Unigraf\Unigraf UCD Tools\ldata\playback\content\SBTM-SSTM</code>
Dolby Vision DEMO – Playlist	A set of static images transmitted with matching Dolby Vision metadata.	<code>C:\Program Files\Unigraf\Unigraf UCD Tools\ldata\playback\content\ Dolby Vision</code>

Playlist: Basic Video & Audio Example


The playlist sequences video files and audio according to the description below.

Video

Frames used for Scenario 1 and Scenario 2 (Image1.jpg, Image 2.jpg)

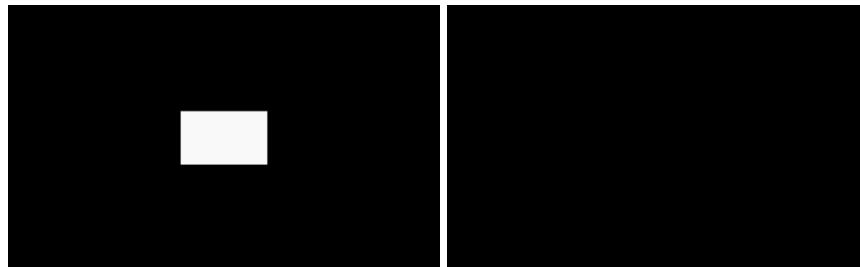
Frame used for Scenario 3 and Scenario 4 (Philips.svg)

Description of Scenarios

	Name	Duration	Repeated sequence
1	Flip-flop with LPCM Audio	60 s	CTA 1920x1080 60 Hz (VIC 16), RGB 8 BPC, 60 frames Image1.jpg, 60 frames Image2.jpg, Audio: Rhythm.wav
2	Flip-flop with AC3 Audio	60 s	CTA 1920x1080 60 Hz (VIC 16), RGB 8 BPC, 60 frames Image1.jpg, 60 frames Image2.jpg, Audio: 44100Hz_16bit_AC3_2channels_60sec_sine.iec61937.bin
3	Flip-flop Silent	60 s	CTA 1920x1080 60 Hz (VIC 16), RGB 8 BPC, 60 frames Image1.jpg, 60 frames Image2.jpg, No Audio.
4	Philips 1920x1080p + 1kHz	60 s	CTA 1920x1080 60 Hz (VIC 16), RGB 8 BPC, 60 Frames Philips.svg, Audio: 1 kHz sine wave (1kHz.wav)
5	Philips 3840x2160p + 1kHz	60 s	CTA 3840 x 2160 @ 60Hz (VIC 97), RGB 8 BPC 60 Frames Philips.svg, Audio: 1 kHz sine wave (1kHz.wav)

Playlist: Audio-Video Latency

Note: To measure video latency, ULT-01 test tool is needed.


Description of Scenarios

These scenarios can be used to estimate audio-video synchronization using external tools like SyncOne2 or similar. Video latency measuring requires the Unigraf ULT-01 tool.

The pattern with a white patch is shown for 15 frames, and then the black screen is shown for 45 frames. The audio beep is transmitted during the first frame of a white patch pattern.

Video	Name	Duration	Repeated sequence
1	vic16	60 s	CTA 1920x1080 60 Hz (VIC 16), RGB 8 BPC, 15 frames frame1.vpattern, 45 frame0.vpattern, Audio: beep.wav
2	vic97	60 s	CTA 3840x2160 60 Hz (VIC 97), RGB 8 BPC, 45 frames frame1.vpattern, 15 frame0.vpattern, Audio: beep.wav

Frames used for the scenario (frame1.vpattern frame0.vpattern)

Playlist: HDR & Metadata Example

Example demonstrates the use of metadata packets.

Video:

The Scenarios use four versions of the same image: GoldenGate0.jpg, GoldenGate1.jpg, GoldenGate2.jpg and GoldenGate3.jpg.

All four images use the same dynamic range in pixel data but contain a text label indicating pixel dynamic range applied in the metadata. If DUT behaves correctly, applying different metadata changes the appearance of the image on DUT screen.

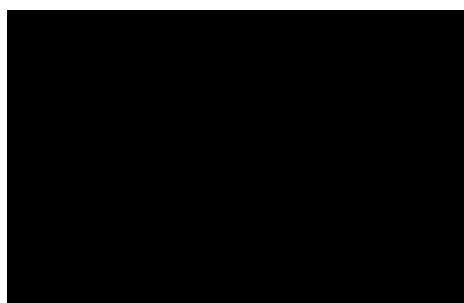
Scenarios for HDMI Output

Video mode in all steps: CTA 1920×1080 60 Hz (VIC 16), RGB 8 BPC, No audio.

Name	Duration	Repeated sequence
SDR	10 sec	180 frames GoldenGate0.jpg, Packet: Infoframes_0002;
HDR	10 sec	180 frames GoldenGate1.jpg, Packets: Infoframes_0002, Infoframes_0000
HLG	10 sec	180 frames GoldenGate2.jpg, Packets: Infoframes_0001, Infoframes_0002
HDR10+	10 sec	180 frames GoldenGate3.jpg, Packets: Infoframes_0002, Infoframes_0003, Infoframes_0000
SDR – HDR	10 sec	180 frames GoldenGate0.jpg, Packets: Infoframes_0002; 180 frames GoldenGate1.jpg, Packets: Infoframes_0002, Infoframes_0000
SDR – HLG	10 sec	180 frames GoldenGate0.jpg, Packet: – ; 180 frames GoldenGate2.jpg, Packets: Infoframes_0001, Infoframes_0002
SDR – HDR10+	10 sec	180 frames GoldenGate0.jpg, Packet: Infoframes_0002; 180 frames GoldenGate3.jpg, Packets: Infoframes_0002, Infoframes_0003, Infoframes_0000

Playlist: Grayscale

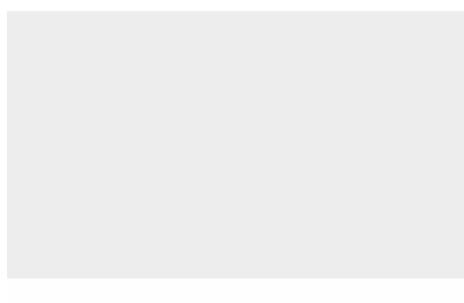
Description of Scenarios


The scenarios show smooth transition though shades of gray from black to white.

	Name	Duration	Repeated sequence
1	GrayFHD_60	60 s	CTA 1920x1080 60 Hz (VIC 16), RGB 12 BPC, 120 frames: gray0.vpattern - gray119.vpattern, Audio: No audio
2	GrayUHD_119	60 s	CTA 3840x2160 119,88 Hz, RGB 12 BPC, 120 frames: gray0.vpattern - gray119.vpattern, Audio: No audio

Video

Below you can see three example frames from the video.


Gray0.vpattern

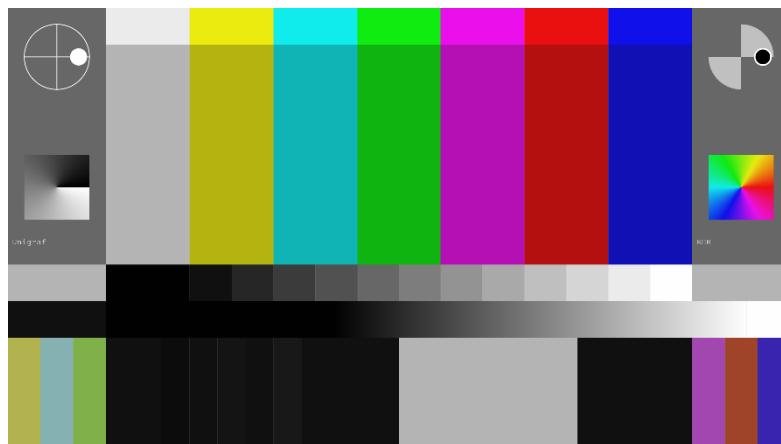
Gray60.vpattern

Gray119.vpattern

Playlist: Dolby Vision DEMO

Description of Scenarios

A set of static images transmitted with matching Dolby Vision metadata.


	Name	Duration	Repeated sequence
1	playFiles_scenario	30 s	1920x1080 60Hz, RGB 8 BPC, 4 frames: Video_0000.bin – Video_0003.bin, Infoframes: Infoframe0000.bin – InfoFrame0033.bin Audio: No audio

Playlist: VRR Example

Playlist demonstrates controlling VRR (Variable Refresh Rate) in Scenarios when using HDMI output.

Video

The image used for the test contains a combination of color bars, gray scales, and rotating items. The test uses a sequence of images creating a full rotation in 60 frames.

Scenario with Video Mode 1920.1080 60 Hz

The scenario uses 1920×1080 59.94/60 Hz video timing (VIC 16). No audio.

	Name	Duration	Repeated sequence
1	FHD VRR 48..59 switch	60 s	VRR enabled. RGB 8 BPC. Packets: infoframe_00, infoframe_01 300 frames with 48 Hz frame rate, 300 frames with 59 Hz frame rate.

Scenario with Video Mode 3840.2160 60 Hz

The scenario uses 3840×2160 59.94/60 video timing (VIC 97). No audio.

	Name	Duration	Repeated sequence
1	UHD VRR48..59 switch	60 s	VRR enabled. RGB 8 BPC. Packets: infoframe_00, infoframe_02 300 frames with 48 Hz frame rate, 300 frames with 59 Hz frame rate.

Scenario with Video Mode 3840.2160 60 Hz

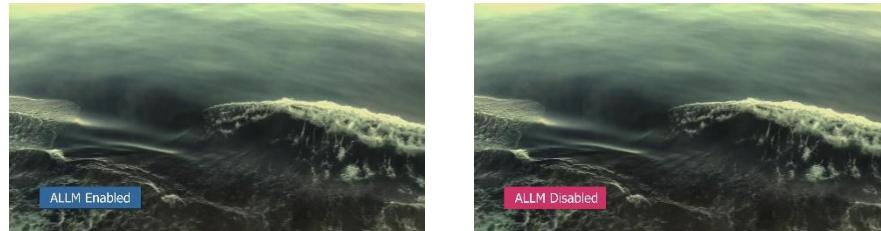
The scenario uses 3840×2160 59.94/60 video timing (VIC 97). No audio.

	Name	Duration	Repeated sequence
1	UHD VRR48..59 switch	60 s	VRR enabled. RGB 8 BPC. Packets: infoframe_00, infoframe_02 300 frames with 48 Hz frame rate, 300 frames with 59 Hz frame rate.

Playlist: QMS-VRR Example

Playlist demonstrates Quick Media Switching QMS by sending Video Timing Extended Metadata (VTEM) with TFR changing between 48/1.001 and 60.

Video


The same as in VRR Example above.

Playlist: ALLM

Playlist for demonstrating Auto Low-latency Mode (ALLM) capability of a DUT monitor.

Video:

The Scenarios use a series of images: allm_on_off_000.jpg to allm_on_off_0011.jpg. Text panel on the images indicate if ALLM is enabled or not. The first scenario is presented with ALLM enabled and the second by switching ALLM on and off sequentially.

Scenarios for HDMI Output

Video mode in all steps: CTA 1920×1080 60 Hz (VIC 16), RGB 8 BPC, No audio.

Name	Duration	Repeated sequence
ALLM Static	60 sec	10 frames allm_on_off_000.jpg, Packet: allm_0.bin; 10 frames allm_on_off_001.jpg, Packet: allm_0.bin; 10 frames allm_on_off_002.jpg, Packet: allm_0.bin; 10 frames allm_on_off_003.jpg, Packet: allm_0.bin; 10 frames allm_on_off_004.jpg, Packet: allm_0.bin; 10 frames allm_on_off_005.jpg, Packet: allm_0.bin
ALLM Toggle	60 sec	10 frames allm_on_off_000.jpg, Packet: allm_0.bin; 10 frames allm_on_off_001.jpg, Packet: allm_0.bin; 10 frames allm_on_off_002.jpg, Packet: allm_0.bin; 10 frames allm_on_off_003.jpg, Packet: allm_0.bin; 10 frames allm_on_off_004.jpg, Packet: allm_0.bin; 10 frames allm_on_off_005.jpg, Packet: allm_0.bin; 10 frames allm_on_off_006.jpg, Packet: allm_1.bin; 10 frames allm_on_off_007.jpg, Packet: allm_1.bin; 10 frames allm_on_off_008.jpg, Packet: allm_1.bin; 10 frames allm_on_off_009.jpg, Packet: allm_1.bin; 10 frames allm_on_off_0010.jpg, Packet: allm_1.bin; 10 frames allm_on_off_0011.jpg, Packet: allm_1.bin

Playlist: HDR10+ SSTM & SBTM Example

Description of Scenarios

Playlist demonstrates using HDR10+ SSTM VSIF for Source-Side Tone Mapping, and HDMI Forum SBTM VSIF for Source-Based Tone Mapping.

	Name	Duration	Repeated sequence
1	SDR	10 s	3840x2160 30 Hz, RGB 10 BPC, Video: Channel1.jpg, repeated 180 times Packets: Infoframes_0005.bin, Audio: No audio
2	HDR10+ SSTM	10 s	3840x2160 30 Hz, RGB 10 BPC, Video: Channel0.jpg, repeated 180 times Packets: Infoframes_0000.bin, _0005.bin, _0006.bin Audio: No audio
3	SBTM G-RDM	10 s	3840x2160 30 Hz, RGB 10 BPC, Video: Channel0.jpg, repeated 180 times, Packets: Infoframes_0000.bin, _0005.bin, _0007.bin Audio: No audio
4	SDR – SBTM G-RDM	10 s	3840x2160 30 Hz, RGB 10 BPC, Video: Step1: Channel1.jpg, repeated 150 times, Packets: Infoframes_0005.bin Step2: Channel0.jpg, repeated 180 times, Packets: 0000.bin, _0005.bin, _0007.bin Audio: No audio
5	SBTM D-RDM	10 s	3840x2160 30 Hz, RGB 10 BPC, Video: Channel0.jpg, repeated 180 times Packets: Infoframes_0000.bin, _0005.bin, _0008.bin Audio: No audio
6	SDR – SBTM D-RDM	10 s	3840x2160 30 Hz, RGB 10 BPC, Video: Step1: Channel1.jpg, repeated 150 times, Packets: Infoframes_0005.bin Step2: Channel0.jpg, repeated 150 times, Packets: 0000.bin, _0005.bin, _0008.bin Audio: No audio

Video

Channel0.jpg

Channel1.jpg